Strong pseudoprime: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Warren Schudy
m (zapped categories)
imported>Karsten Meyer
Line 19: Line 19:
== Further reading ==
== Further reading ==
* [[Richard E. Crandall]] and [[Carl Pomerance]]. Prime Numbers: A Computational Perspective. Springer-Verlag, 2001, ISBN 0-387-25282-7  
* [[Richard E. Crandall]] and [[Carl Pomerance]]. Prime Numbers: A Computational Perspective. Springer-Verlag, 2001, ISBN 0-387-25282-7  
* [[Paolo Ribenboim]]. The New Book of Prime Number Records. Springer-Verlag, 1996, ISBN 0-387-94457-5
* [[Paulo Ribenboim]]. The New Book of Prime Number Records. Springer-Verlag, 1996, ISBN 0-387-94457-5


== Links ==
== Links ==
* [http://de.wikibooks.org/wiki/Pseudoprimzahlen:_Tabelle_starke_Pseudoprimzahlen_(49_-_9999) Table of strong pseudoprimes between 49 and 1393]
* [http://de.wikibooks.org/wiki/Pseudoprimzahlen:_Tabelle_starke_Pseudoprimzahlen_(49_-_9999) Table of strong pseudoprimes between 49 and 1393]

Revision as of 06:58, 15 June 2009

This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

A strong pseudoprime is an Euler pseudoprime with a special property:

A composite number (where is odd) is a strong pseudoprime to a base if:

or
  • if

The first condition is stronger.

Properties

  • Every strong pseudoprime is also an Euler pseudoprime.
  • Every strong pseudoprime is odd, because every Euler pseudoprime is odd.
  • If a strong pseudoprime is pseudoprime to a base in , than is pseudoprime to a base in and vice versa.
  • There exist Carmichael numbers that are also strong pseudoprimes.

Further reading

Links