Fibonacci number: Difference between revisions
Jump to navigation
Jump to search
imported>David E. Volk No edit summary |
imported>Wlodzimierz Holsztynski |
||
Line 26: | Line 26: | ||
*<math>F_0^2 + F_1^2 + F_2^2 + ... + F_n^2 = \sum_{i=0}^n F_i^2 = F_n \cdot F_{n+1}</math> | *<math>F_0^2 + F_1^2 + F_2^2 + ... + F_n^2 = \sum_{i=0}^n F_i^2 = F_n \cdot F_{n+1}</math> | ||
==Further reading== | == Direct formula == | ||
Let <math>A := \frac{1+\sqrt{5}}{2}</math> and <math>a := \frac{1-\sqrt{5}}{2}</math> . Let | |||
:::<math>f_n\ :=\ \frac{1}{\sqrt{5}}\cdot(A^n - a^n)</math> | |||
Then: | |||
* <math>f_0 = 0\ </math> and <math>\ f_1 = 1</math> | |||
* <math>A^2 = A+1\ </math> hence <math>\ A^{n+2} = A^{n+1}+A^n</math> | |||
* <math>a^2 = a+1\ </math> hence <math>a^{n+2} = a^{n+1}+a^n\ </math> | |||
* <math>f_{n+2}\ =\ f_{n+1}+f_n</math> | |||
for every <math>\ n=0,1,\dots</math>. Thus <math>\ f_n = F_n</math> for every <math>\ n=0,1,\dots</math> , i.e. | |||
<math>F_n\ =\ \frac{1}{\sqrt{5}}\cdot \left(\left(\frac{1+\sqrt{5}}{2}\right)^n - \left(\frac{1-\sqrt{5}}{2}\right)^n\right)</math> | |||
for every <math>\ n=0,1,\dots</math> . Furthermore: | |||
* <math>A\cdot a = -1\ </math> | |||
* <math>A > 1\ </math> | |||
* <math>-1 < a < 0\ </math> | |||
* <math>\frac{1}{2}\ >\ \left|\frac{1}{\sqrt{5}}\cdot a^n\right|\quad\rightarrow\quad 0</math> | |||
It follows that | |||
<math>F_n\ </math> is the nearest integer to <math>\frac{1}{\sqrt{5}}\cdot \left(\frac{1+\sqrt{5}}{2}\right)^n</math> | |||
for every <math>\ n=0,1,\dots</math> . | |||
== Further reading == | |||
* [[John Horton Conway|John H. Conway]] und Richard K. Guy, ''The Book of Numbers'', ISBN 0-387-97993-X | * [[John Horton Conway|John H. Conway]] und Richard K. Guy, ''The Book of Numbers'', ISBN 0-387-97993-X | ||
[[Category:Mathematics Workgroup]] | [[Category:Mathematics Workgroup]] |
Revision as of 07:15, 29 December 2007
In mathematics, the Fibonacci numbers form a sequence defined by the following recurrence relation:
The sequence of fibonacci numbers start: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ...
Fibonacci numbers and the rabbits
The sequence of fibonacci numbers was first used, to repesent the growth of a colony of rabbits, starting with one pair of rabbits.
Properties
- The quotient of two consecutive fibonacci numbers converges to the golden ratio:
- If divides then divides
- If is a prime number, then is also a prime number.
Direct formula
Let and . Let
Then:
- and
- hence
- hence
for every . Thus for every , i.e.
for every . Furthermore:
It follows that
is the nearest integer to
for every .
Further reading
- John H. Conway und Richard K. Guy, The Book of Numbers, ISBN 0-387-97993-X