Fibonacci number: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>David E. Volk
No edit summary
imported>Wlodzimierz Holsztynski
Line 26: Line 26:
*<math>F_0^2 + F_1^2 + F_2^2 + ... + F_n^2 = \sum_{i=0}^n F_i^2 = F_n \cdot F_{n+1}</math>
*<math>F_0^2 + F_1^2 + F_2^2 + ... + F_n^2 = \sum_{i=0}^n F_i^2 = F_n \cdot F_{n+1}</math>


==Further reading==
== Direct formula ==
 
Let&nbsp; <math>A := \frac{1+\sqrt{5}}{2}</math>&nbsp; and &nbsp;<math>a := \frac{1-\sqrt{5}}{2}</math> .&nbsp; Let
 
:::<math>f_n\ :=\ \frac{1}{\sqrt{5}}\cdot(A^n - a^n)</math>
 
Then:
* <math>f_0 = 0\ </math> &nbsp; &nbsp; and &nbsp; &nbsp; <math>\ f_1 = 1</math>
* <math>A^2 = A+1\ </math> &nbsp; &nbsp; hence &nbsp; &nbsp; <math>\ A^{n+2} = A^{n+1}+A^n</math>
* <math>a^2 = a+1\ </math> &nbsp; &nbsp; hence &nbsp; &nbsp; <math>a^{n+2} = a^{n+1}+a^n\ </math>
* <math>f_{n+2}\ =\ f_{n+1}+f_n</math>
 
for every <math>\ n=0,1,\dots</math>. Thus <math>\ f_n = F_n</math>&nbsp; for every <math>\ n=0,1,\dots</math> , i.e.
 
<math>F_n\ =\ \frac{1}{\sqrt{5}}\cdot \left(\left(\frac{1+\sqrt{5}}{2}\right)^n - \left(\frac{1-\sqrt{5}}{2}\right)^n\right)</math>
 
for every <math>\ n=0,1,\dots</math> . Furthermore:
 
* <math>A\cdot a = -1\ </math>
* <math>A > 1\ </math>
* <math>-1 < a < 0\ </math>
* <math>\frac{1}{2}\ >\ \left|\frac{1}{\sqrt{5}}\cdot a^n\right|\quad\rightarrow\quad 0</math>
 
 
It follows that
 
<math>F_n\ </math>&nbsp; is the nearest integer to&nbsp; <math>\frac{1}{\sqrt{5}}\cdot \left(\frac{1+\sqrt{5}}{2}\right)^n</math>
 
for every <math>\ n=0,1,\dots</math> .
 
 
== Further reading ==
* [[John Horton Conway|John H. Conway]] und Richard K. Guy, ''The Book of Numbers'', ISBN 0-387-97993-X
* [[John Horton Conway|John H. Conway]] und Richard K. Guy, ''The Book of Numbers'', ISBN 0-387-97993-X


[[Category:Mathematics Workgroup]]
[[Category:Mathematics Workgroup]]

Revision as of 07:15, 29 December 2007

This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In mathematics, the Fibonacci numbers form a sequence defined by the following recurrence relation:

The sequence of fibonacci numbers start: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ...

Fibonacci numbers and the rabbits

The sequence of fibonacci numbers was first used, to repesent the growth of a colony of rabbits, starting with one pair of rabbits.

Properties

  • The quotient of two consecutive fibonacci numbers converges to the golden ratio:
  • If divides then divides
  • If is a prime number, then is also a prime number.

Direct formula

Let    and   .  Let

Then:

  •     and    
  •     hence    
  •     hence    

for every . Thus   for every , i.e.


for every . Furthermore:


It follows that

  is the nearest integer to  

for every .


Further reading