Lucas sequence: Difference between revisions
imported>Karsten Meyer mNo edit summary |
imported>Karsten Meyer |
||
Line 38: | Line 38: | ||
*<math>\scriptstyle p\ </math> divides <math>\scriptstyle V_p(P,Q)-P\ </math> | *<math>\scriptstyle p\ </math> divides <math>\scriptstyle V_p(P,Q)-P\ </math> | ||
[[Fermat's Little Theorem]] can then be seen as a special case of <math>\scriptstyle p\ </math> divides <math>\scriptstyle (V_n(P,Q) - P)\ </math> because <math>\scriptstyle a^p \equiv a \ | [[Fermat's Little Theorem]] can then be seen as a special case of <math>\scriptstyle p\ </math> divides <math>\scriptstyle (V_n(P,Q) - P)\ </math> because <math>\scriptstyle a^p \equiv a \pmod p</math> is equivalent to <math>\scriptstyle V_p(a+1,a) \equiv V_1(a+1,a) \pmod p</math>. | ||
The converse pair of statements that if <math>\scriptstyle n\ </math> divides <math>\scriptstyle U_n(P,Q)-\left(\frac Dn\right)</math> then is <math>\scriptstyle n\ </math> a prime number and if <math>m\ </math> divides <math>\scriptstyle V_m(P,Q)-P\ </math> then is <math>m\ </math> a prime number) are individually false and lead to [[Fibonacci pseudoprime|Fibonacci pseudoprimes]] and [[Lucas pseudoprime|Lucas pseudoprimes]], respectively. | The converse pair of statements that if <math>\scriptstyle n\ </math> divides <math>\scriptstyle U_n(P,Q)-\left(\frac Dn\right)</math> then is <math>\scriptstyle n\ </math> a prime number and if <math>m\ </math> divides <math>\scriptstyle V_m(P,Q)-P\ </math> then is <math>m\ </math> a prime number) are individually false and lead to [[Fibonacci pseudoprime|Fibonacci pseudoprimes]] and [[Lucas pseudoprime|Lucas pseudoprimes]], respectively. |
Revision as of 09:23, 17 November 2007
Lucas sequences are a particular generalisation of sequences like the Fibonacci numbers, Lucas numbers, Pell numbers or Jacobsthal numbers. These sequences have one common characteristic: they can be generated over quadratic equations of the form: .
There exist two kinds of Lucas sequences:
- Sequences with ,
- Sequences with ,
where and are the solutions
and
of the quadratic equation .
Properties
- The variables and , and the parameter and are interdependent. In particular, and .
- For every sequence it holds that and .
- For every sequence is holds that and .
For every Lucas sequence the following are true:
- for all
Fibonacci numbers and Lucas numbers
The two best known Lucas sequences are the Fibonacci numbers and the Lucas numbers with and .
Lucas sequences and the prime numbers
If the natural number is a prime number then it holds that
- divides
- divides
Fermat's Little Theorem can then be seen as a special case of divides because is equivalent to .
The converse pair of statements that if divides then is a prime number and if divides then is a prime number) are individually false and lead to Fibonacci pseudoprimes and Lucas pseudoprimes, respectively.
Further reading
- P. Ribenboim, The New Book of Prime Number Records (3 ed.), Springer, 1996, ISBN 0-387-94457-5.
- P. Ribenboim, My Numbers, My Friends, Springer, 2000, ISBN 0-387-98911-0.