Fermat pseudoprime: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Karsten Meyer
No edit summary
imported>Karsten Meyer
mNo edit summary
Line 28: Line 28:
* [[Richard E. Crandall]] and [[Carl Pomerance]]: Prime Numbers. A Computational Perspective. Springer Verlag, ISBN 0-387-25282-7  
* [[Richard E. Crandall]] and [[Carl Pomerance]]: Prime Numbers. A Computational Perspective. Springer Verlag, ISBN 0-387-25282-7  
* [[Paolo Ribenboim]]: The New Book of Prime Number Records. Springer Verlag, 1996, ISBN 0-387-94457-5
* [[Paolo Ribenboim]]: The New Book of Prime Number Records. Springer Verlag, 1996, ISBN 0-387-94457-5
==Links==
* [http://de.wikibooks.org/wiki/Pseudoprimzahlen:_Tabelle_Pseudoprimzahlen_(15_-_4999) Table of the Fermat pseudoprimes between 15 and 4997]

Revision as of 11:14, 7 December 2007

This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
Code [?]
 
This editable Main Article is under development and subject to a disclaimer.

A composite number is called Fermat pseudoprime to a natural base , coprime to , so that

Restriction

It is sufficient, that the base satisfy because every odd number satisfy for that [1]

If is a Fermat pseudoprime to base , then is a Fermat pseudoprime to base for every integer

Odd Fermat pseudoprimes

To every odd Fermat pseudoprime exist an even number of bases . Every base has a cobase

Examples

15 is a Fermat pseudoprime to the bases 4 and 15
49 is a Fermat pseudoprime to the bases 18, 19, 30 and 31

Properties

Most of the Pseudoprimes, like Euler pseudoprime, Carmichael number, Fibonacci pseudoprime and Lucas pseudoprime, are Fermat pseudoprimes.

References and notes

  1. Richard E. Crandall and Carl Pomerance: Prime Numbers. A Computational Perspective. Springer Verlag , page 132, Therem 3.4.2.

Further reading

Links