Fermat pseudoprime: Difference between revisions
Jump to navigation
Jump to search
imported>Karsten Meyer m (Fermat Pseudoprime moved to Fermat pseudoprime: mistake) |
imported>Karsten Meyer mNo edit summary |
||
Line 4: | Line 4: | ||
It is sufficient, that the base ''a'' satisfy <math>2 \le a \le n-2</math> because every odd number ''n'' satisfy for <math>a = n-1\ </math> that <math>a^{n-1} \equiv 1 \pmod n</math><ref>Richard E. Crandall and Carl Pomerance: Prime Numbers. A Computational Perspective. Springer Verlag , page 132, Therem 3.4.2. </ref> | It is sufficient, that the base ''a'' satisfy <math>2 \le a \le n-2</math> because every odd number ''n'' satisfy for <math>a = n-1\ </math> that <math>a^{n-1} \equiv 1 \pmod n</math><ref>Richard E. Crandall and Carl Pomerance: Prime Numbers. A Computational Perspective. Springer Verlag , page 132, Therem 3.4.2. </ref> | ||
If ''n'' is a Fermat pseudoprime to base ''a'', then ''n'' is a Fermat pseudoprime to base <math>b\cdot n+a</math> for every integer <math>b \ge 0</math> | If ''n'' is a Fermat pseudoprime to base ''a'', then ''n'' is a Fermat pseudoprime to base <math>b\cdot n+a</math> for every integer <math>b \ge 0</math> | ||
Revision as of 14:09, 7 November 2007
A composite number n is called Fermat pseudoprime to a natural base a, coprime to n, so that
Restriction
It is sufficient, that the base a satisfy because every odd number n satisfy for that [1]
If n is a Fermat pseudoprime to base a, then n is a Fermat pseudoprime to base for every integer
Properties
Most of the Pseudoprimes, like Euler pseudoprime, Carmichael number, Fibonacci pseudoprime and Lucas pseudoprime, are Fermat pseudoprimes.
References and notes
- ↑ Richard E. Crandall and Carl Pomerance: Prime Numbers. A Computational Perspective. Springer Verlag , page 132, Therem 3.4.2.
Further reading
- Richard E. Crandall and Carl Pomerance: Prime Numbers. A Computational Perspective. Springer Verlag, ISBN 0-387-25282-7
- Paolo Ribenboim: The New Book of Prime Number Records. Springer Verlag, 1996, ISBN 0-387-94457-5