Euler pseudoprime: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Karsten Meyer
(Ein beginn)
 
imported>Karsten Meyer
No edit summary
Line 9: Line 9:
*Every Euler Pseudoprime to base ''a'', which satisfy <math>a^{(n-1)/2}\equiv\left(\frac an\right)\pmod n</math> is an [[Euler-Jacobi pseudoprime]].
*Every Euler Pseudoprime to base ''a'', which satisfy <math>a^{(n-1)/2}\equiv\left(\frac an\right)\pmod n</math> is an [[Euler-Jacobi pseudoprime]].
*[[Carmichael number|Carmichael numbers]] and [[Strong pseudoprime|Strong pseudoprimes]] are Euler pseudoprimes too.
*[[Carmichael number|Carmichael numbers]] and [[Strong pseudoprime|Strong pseudoprimes]] are Euler pseudoprimes too.
== Further reading ==
* [[Richard E. Crandall]] and [[Carl Pomerance]]: Prime Numbers. A Computational Perspective. Springer Verlag, ISBN 0-387-25282-7
* [[Paolo Ribenboim]]: The New Book of Prime Number Records. Springer Verlag, 1996, ISBN 0-387-94457-5
[[Category:Mathematics Workgroup]]

Revision as of 13:49, 7 November 2007

A composite number n is called an Euler pseudoprime to a natural base a, if

Properties

and

Further reading