Euler pseudoprime: Difference between revisions
Jump to navigation
Jump to search
imported>Karsten Meyer mNo edit summary |
imported>Karsten Meyer mNo edit summary |
||
Line 1: | Line 1: | ||
A composite number ''n'' is called an '''Euler pseudoprime''' to a natural base ''a'', if <math>a^{\frac {n-1}{2}} \equiv 1 \pmod n</math> | A composite number ''n'' is called an '''Euler pseudoprime''' to a natural base ''a'', if <math>a^{\frac {n-1}{2}} \equiv 1 \pmod n</math> or <math>a^{\frac {n-1}{2}} \equiv \left( -1\right) \pmod n</math> | ||
== Properties == | == Properties == |
Revision as of 15:41, 7 November 2007
A composite number n is called an Euler pseudoprime to a natural base a, if or
Properties
- Every Euler pseudoprime is odd.
- Every Euler pseudoprime is also a Fermat pseudoprime:
- and
- Every Euler Pseudoprime to base a, which satisfy is an Euler-Jacobi pseudoprime.
- Carmichael numbers and Strong pseudoprimes are Euler pseudoprimes too.
Further reading
- Richard E. Crandall and Carl Pomerance: Prime Numbers. A Computational Perspective. Springer Verlag, ISBN 0-387-25282-7
- Paolo Ribenboim: The New Book of Prime Number Records. Springer Verlag, 1996, ISBN 0-387-94457-5