Euler pseudoprime: Difference between revisions
Jump to navigation
Jump to search
imported>Karsten Meyer No edit summary |
imported>Karsten Meyer mNo edit summary |
||
Line 3: | Line 3: | ||
== Properties == | == Properties == | ||
*Every Euler pseudoprime is odd. | *Every Euler pseudoprime is odd. | ||
*Every Euler pseudoprime is also a [[Fermat | *Every Euler pseudoprime is also a [[Fermat pseudoprime]]: | ||
:<math>\left( a^{\frac{n-1}{2}}\right)^2 = a^{n-1}</math> | :<math>\left( a^{\frac{n-1}{2}}\right)^2 = a^{n-1}</math> | ||
:and | :and |
Revision as of 13:53, 7 November 2007
A composite number n is called an Euler pseudoprime to a natural base a, if
Properties
- Every Euler pseudoprime is odd.
- Every Euler pseudoprime is also a Fermat pseudoprime:
- and
- Every Euler Pseudoprime to base a, which satisfy is an Euler-Jacobi pseudoprime.
- Carmichael numbers and Strong pseudoprimes are Euler pseudoprimes too.
Further reading
- Richard E. Crandall and Carl Pomerance: Prime Numbers. A Computational Perspective. Springer Verlag, ISBN 0-387-25282-7
- Paolo Ribenboim: The New Book of Prime Number Records. Springer Verlag, 1996, ISBN 0-387-94457-5