Euler pseudoprime: Difference between revisions
Jump to navigation
Jump to search
imported>Karsten Meyer m (beautyfying) |
imported>Karsten Meyer mNo edit summary |
||
Line 7: | Line 7: | ||
:and | :and | ||
:<math>1^2 = \left( -1\right) ^2 = 1\ </math> | :<math>1^2 = \left( -1\right) ^2 = 1\ </math> | ||
*Every Euler Pseudoprime to base ''a'', which satisfy <math>\scriptstyle a^{ | *Every Euler Pseudoprime to base ''a'', which satisfy <math>\scriptstyle a^{\frac{n-1}{2}}\equiv\left(\frac an\right)\pmod n</math> is an [[Euler-Jacobi pseudoprime]]. | ||
*[[Carmichael number|Carmichael numbers]] and [[Strong pseudoprime|Strong pseudoprimes]] are Euler pseudoprimes too. | *[[Carmichael number|Carmichael numbers]] and [[Strong pseudoprime|Strong pseudoprimes]] are Euler pseudoprimes too. | ||
Revision as of 08:37, 17 November 2007
A composite number n is called an Euler pseudoprime to a natural base a, if or
Properties
- Every Euler pseudoprime is odd.
- Every Euler pseudoprime is also a Fermat pseudoprime:
- and
- Every Euler Pseudoprime to base a, which satisfy is an Euler-Jacobi pseudoprime.
- Carmichael numbers and Strong pseudoprimes are Euler pseudoprimes too.
Absolute Euler pseudoprime
An absolute Euler pseudoprime is a composite number c, that satisfies the conrgruence or for every base a that is coprime to c. Every absolute Euler pseudoprime is also a Carmichael number.
Further reading
- Richard E. Crandall and Carl Pomerance: Prime Numbers. A Computational Perspective. Springer Verlag, ISBN 0-387-25282-7
- Paolo Ribenboim: The New Book of Prime Number Records. Springer Verlag, 1996, ISBN 0-387-94457-5