Euler pseudoprime: Difference between revisions
Jump to navigation
Jump to search
imported>Hendra I. Nurdin |
imported>Richard Pinch (→Properties: corrected statement on Carmichael numbers) |
||
Line 10: | Line 10: | ||
::<math>1^2 = \left( -1\right) ^2 = 1\ </math> | ::<math>1^2 = \left( -1\right) ^2 = 1\ </math> | ||
*Every Euler Pseudoprime to base ''a'' that satisfies <math>\scriptstyle a^{\frac{n-1}{2}}\equiv\left(\frac an\right)\pmod n</math> is an [[Euler-Jacobi pseudoprime]]. | *Every Euler Pseudoprime to base ''a'' that satisfies <math>\scriptstyle a^{\frac{n-1}{2}}\equiv\left(\frac an\right)\pmod n</math> is an [[Euler-Jacobi pseudoprime]]. | ||
* | *[[strong pseudoprime|Strong pseudoprimes]] are Euler pseudoprimes too. | ||
== Absolute Euler pseudoprime == | == Absolute Euler pseudoprime == |
Revision as of 15:26, 25 October 2008
A composite number n is called an Euler pseudoprime to a natural base a if or
Properties
- Every Euler pseudoprime is odd.
- Every Euler pseudoprime is also a Fermat pseudoprime:
- and
- Every Euler Pseudoprime to base a that satisfies is an Euler-Jacobi pseudoprime.
- Strong pseudoprimes are Euler pseudoprimes too.
Absolute Euler pseudoprime
An absolute Euler pseudoprime is a composite number c that satisfies the congruence or for every base a that is coprime to c. Every absolute Euler pseudoprime is also a Carmichael number.
Further reading
- Richard E. Crandall and Carl Pomerance. Prime Numbers: A Computational Perspective. Springer-Verlag, 2001, ISBN 0-387-25282-7
- Paolo Ribenboim. The New Book of Prime Number Records. Springer-Verlag, 1996, ISBN 0-387-94457-5