Euler pseudoprime: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Hendra I. Nurdin
imported>Richard Pinch
(→‎Properties: corrected statement on Carmichael numbers)
Line 10: Line 10:
::<math>1^2 = \left( -1\right) ^2 = 1\ </math>
::<math>1^2 = \left( -1\right) ^2 = 1\ </math>
*Every Euler Pseudoprime to base ''a'' that satisfies <math>\scriptstyle a^{\frac{n-1}{2}}\equiv\left(\frac an\right)\pmod n</math> is an [[Euler-Jacobi pseudoprime]].
*Every Euler Pseudoprime to base ''a'' that satisfies <math>\scriptstyle a^{\frac{n-1}{2}}\equiv\left(\frac an\right)\pmod n</math> is an [[Euler-Jacobi pseudoprime]].
*[[Carmichael number|Carmichael numbers]] and [[strong pseudoprime|strong pseudoprimes]] are Euler pseudoprimes too.
*[[strong pseudoprime|Strong pseudoprimes]] are Euler pseudoprimes too.


== Absolute Euler pseudoprime ==
== Absolute Euler pseudoprime ==

Revision as of 15:26, 25 October 2008

This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
Code [?]
 
This editable Main Article is under development and subject to a disclaimer.

A composite number n is called an Euler pseudoprime to a natural base a if or

Properties

and
  • Every Euler Pseudoprime to base a that satisfies is an Euler-Jacobi pseudoprime.
  • Strong pseudoprimes are Euler pseudoprimes too.

Absolute Euler pseudoprime

An absolute Euler pseudoprime is a composite number c that satisfies the congruence or for every base a that is coprime to c. Every absolute Euler pseudoprime is also a Carmichael number.

Further reading