Talk:Systems theory (general)/Archive 1: Difference between revisions
imported>Thomas Mandel |
imported>Thomas Mandel |
||
Line 255: | Line 255: | ||
It may be helpful if you read the research paper published in the journal Systems Reseach and Behavoiral Science | It may be helpful if you read the research paper published in the journal Systems Reseach and Behavoiral Science | ||
titled "Re-evaluating Systems Engineering as a Framework for Tackling Systems Issues by Stephen C. Cook and Timmothy L.J. Ferris. Syst. Res. Vol. 24. No. 2 169-181 (2007). They write from the University of South Australia. | titled "Re-evaluating Systems Engineering as a Framework for Tackling Systems Issues by Stephen C. Cook and Timmothy L.J. Ferris. Syst. Res. Vol. 24. No. 2 169-181 (2007). They write from the University of South Australia. | ||
"As modern systems engineering practice concerns broader contextual issues than just the technological product systems, system engineers are comng to adopt a wider , more abstract position with respect to the nature of the system, and arriving at a view more consistent with the view held by other system thinking practitioners. In the newer understanding of systems engineering the systems of interest encompass the entire set of elements leading to the capability to make an impact in the world, that is: the end product system, the enabling system, the process system and the impact of of these systems in their environments of operation; a set of factors known collectively in | "As modern systems engineering practice concerns broader contextual issues than just the technological product systems, system engineers are comng to adopt a wider , more abstract position with respect to the nature of the system, and arriving at a view more consistent with the view held by other system thinking practitioners. In the newer understanding of systems engineering the systems of interest encompass the entire set of elements leading to the capability to make an impact in the world, that is: the end product system, the enabling system, the process system and the impact of of these systems in their environments of operation; a set of factors known collectively in Australian Defence circles as Fundamental Inputs to Capability |
Revision as of 08:27, 17 September 2007
"I come not with my own strengths but bring with me the gifts,
talents and strengths of my family, tribe and ancestors."
Maori proverb
"There is no way a sophisticated method can substitute for clear thinking." Andreas Goppold
"We cannot understand the whole bit by bit" Bela H Banathy
notes
Note 1: Language is crucial to systems theory. In keeping with Korzybski's g-s and the Whorf Principle of Linguistic Relativity, it is imperative that the intro/definition be precisely worded. Leaving out a single word can make the difference between the new and the old. One bad word can turn the entire enterprise into nonsense. Furthermore, because ontological considerations are different, a new language is being sought. Until that is found, if ever, we are using old words to say something new.
There has to be a point where the knowledge of the subject takes precedence over editorial desires.
note 2) While I don't see it as a controversy of the confrontational kind, systems theory has a built-in controversy with classical science. Much ado is made of the diferent perspectives involved, (a) that of looking at an object and (b)that of looking at what the object is doing. So there is a lot of high-level talk about the shortcomings of the old science going on in the literature of systemics. I am not aware of any classical scientists refuting this observation however. So it has not become a controversy of the ordinary kind yet. Systems theory does not replace classical science, it is a complementary of classical science.
If there is controversy, used to be that cybernetics and systems each argued that the other came after, in the end, cybernetics is a special case of the more general systems theory. Today, the controversy is between complexity science and systems theory. IMO, Complexity wants to be top dog, and they act as if they invented something new e.g., the new science of complexity, but what they did is computerize/mathematize complex systems. They don't invalidate system theory principles, they regard them as "old hat" while, later, they refer back to them as their core principles. In my very personal opinion IMVPO
note 3) This quote is from the systems biology article. Does this suggest that systems theory is "dated"? Or does it suggest that the authors did not find it necessary (in this or any other part of the article) to acknowledge prior research?
"When trying to understand biological systems, systems biologists need not treat the components or elements of a system (or subsystem) exclusively as discrete or concrete objects or entities (e.g., molecules, organelles, cells, etc.), but may also treat them as abstracted concepts of organizational collections or activity patterns of those objects or entities, admitting of study by mathematical, computational and statistical tools. Those include such concepts as circuits, networks and modules, more about which will follow below. Such concepts have a way of appearing less abstract or hypothetical as biologists more fully define them in terms of structure and coordinated dynamical interactions; predict systems behavior from them using quantitative models; and relate them functionally in the larger systems embedding them."
The above is clearly systems theory. It is not consistant with the premise that systems theory is outdated/not used, it is consistant with the premise that systems theory is relatively unknown/ignored.
Note 4) I received two reprints from John Warfield who has written on how to do systems work of high quality. Here we have one of the inside stories concerning the politics within the systems movement. They are people like everyone else, and they have faults like everyone else. In this case Warfield has done a tremendous quantity of systems research but he feels that his work has been neglected. This seems to be a common theme among systemists - neglect of the work of others.
Note 5) On the other hande, Warfield writes, "It is a daunting task to discuss the design of a systems sciences program when the word "systems" and the word "science" have both been diminished in scope or scale by common yusage. This task is made still more dificult when, as in applications of systems science, the information that is required to resolve difficult situations is so often in the hands of people who are not accustomed to scientific language, whether debased or not."
I think that Warfield hits the nail straight on the head. I for one, when I read decades ago about this system or that system, did not imagine a special meaning. My personal research into organismic systems went on for 22 years before I discovered system has a special meaning, the same meaning I was researching, and that literally tens of thousands have worked with it. The point is that when I came across the word "system" in my early research I didn't find any need to look further into the meaning of that word and in no way did I think that there was anything special about it. While system theory is common among systemists, as is system philosophy, system science, system thinking and systemics, the general public, and this includes Phd's from all disciplines, does not make that special connection either. This does not mean that the principles of system thoery have been likewise ignored, systems biology is a good example of parallel research apparently without any knowledge of system philosophy. Thus it is all the more important that the definition be explicite about the integrative aspect of a system. Systems thinking does not mean that all science should be put into the same framework as a bus system or sewer system or organizational system.
note 6 The reason for this note is one sentence written by Warfield as a note 17 on page 538 journal article ----
"The fundamental idea is that the systems science must be a neutral science that is applicable across the board, but which will usualy have to be supplemented by experts from the specific sciences or from other areas where relevant experience is found."
It appears that systems science and CitiZendium have something in common. Creating a neutral science is not difficult when general terms constitute the language. Enabling experts from specific sciences is more problematic. Systems science is not just science 2.0. In some crucial (ontological) respects it is a completly new and different way of doing science. However, in our case, we have a perfect supplemental specific application of systems science to be found in the article systems biology.
- I just found your comments Greg. I am planning on deleting the old article soon, and then reorganize this talk page according to tradition. Meanwhile, I have removed complexity for now and instead will deal with complex systems. I haven't done much with methodology because I am still trying to gather together significant areas. In one sense all of systemics is methodology, for example the change in thinking. I am working from several sources and I still haven't got the general framework correct yet,Thomas Mandel 11:13, 24 June 2007 (CDT)
Methodology
The article has little to say (directly, at least) about methodology. It seems that the article ought to say something about how research in systems theory is done. Greg Woodhouse 22:34, 19 June 2007 (CDT)
hard vs. soft systems and controversy
The article states without justification that "soft" systems are not amenable to the same level of mathematical analysis as "hard" systems. This claim is not uncontroversial. Mathematical approaches such as neural networks or genetic algorithms are actually quite precise. What is more significant, though, is that these techniques do not easily (if at all) reduce to Zadeh's fuzzy systems, and there is little consensus that this is a useful theoretical approach. Other ostensibly "soft" models liike PDEs are reducible to "hard" models in a very precise way. Think, for example, of the relationship between thermodynamics and classical statistical mechanics. Greg Woodhouse 22:43, 19 June 2007 (CDT)
- No one is saying that hard system approaches are not precise, but they failed to live up to expectations when these techniques were applied to social systems, family system theory for example. The bottom line is that we have to report what they did/do and not what it appears like to you and me. Thomas Mandel
operations research
Can you elaborate a bit on how OR fits into the framework of systems theory? The article lists it as a modern development, but doesn't elaborate further. Greg Woodhouse 22:47, 19 June 2007 (CDT)
computers and complexity
You might want to be a little more nuanced here. It is true that the growth of computer technology has played an important role in the styudy of complex systems, but one of the most iconic figures in the history of dynamical systems and chaos is Poincaré. Much of the theory goes back to the 19th century. The relationship between heat and triginometric series goes back to Joseph Fourier, In addition, the study of complexity theory in computer science (as is the case with computabilty) was initially concerned with computation in the abstract, not the complexity of algorithms executed on digital computers. Greg Woodhouse 23:33, 19 June 2007 (CDT)
- I will delete complexity science for now. Thomas Mandel 11:19, 24 June 2007 (CDT)
Here's some feedback from the field --
Very interesting Thom:
I suggest that you keep up the work! It's quite good and contains a lot that I never knew.
Peace, -- Mark
Between you and me, I am surprised as much as you are, thanks to the guys here at CZ, I had to rise to a new level Thomas Mandel 14:32, 23 June 2007 (CDT)
It appears that there are two major applicabilities; one would within the systems theory domain, how systems theorists apply their research and the other would be in the field, or how systems theory is used by other than system theorists. This begs the question "Who is systems theory for?" The answer is found in the purpose of systems theory.Thomas Mandel 00:53, 20 June 2007 (CDT)
I don't know where your "this" starts and ends. I am trying to map it out as they have done it. Areas of applicability is what we call "Applications" I think what I was trying to do is form a historical sequence. Thomas Mandel 15:58, 19 June 2007 (CDT)
I moved this reply from the article page to here. Thomas Mandel 15:58, 19 June 2007 (CDT)
- Oops! Sorry about that.
- None of this is history of systems theory. What you are doing in providing a long list of areas of research where some sort of phenomenon (e.g., feedback in queuing systems where customers are not lost to the system but able to reenter) is present that is of interest to systems theorists. Perhaps you can call it "areas of applicability" or something along those lines. Greg Woodhouse 15:39, 19 June 2007 (CDT)
- Very astute of you to catch that Greg. Thomas Mandel
Holding
Bela H. Banathy has contributed extensively to the knowledge base of systems theory, human activity in particular. Bela Banathy's last book, Guided Evolution of Society: A System View presented a cultural evolution of models and ideas exploring "The Journey from Evolutionary Consciousness to Conscious Evolution." He talks about how biological evolution evolved into a cultural evolution, giving examples of how, when prehistoric man developed a language, his tool making evolved as well. [3]
Systems theory refers to a body of thought and way of thinking held among a small minority of thinkers across various disciplines. Systems theory primarily traces itself to a work by biologist Ludwig von Bertalanffy, General System Theory, in which he sought to bring under one philosophical heading his thoughts about organismic structures. Bertalanffy argued [fill in core argument]. Adherents of system theory have gone on to apply Bertalanffy's thought to [fill in details].
However, the translation of the German into the English general system theory has "wroth a certain amount of Havoc" writes Ervin Laszlo[] in the preface of von Bertalanffy's book Perspectives on General System Theory.. []
"The original concept of general system theory was Allgemeine Systemtheorie (or Lehre). Now "Theorie" (or Lehre) just as Wissenschaft (translated Scholarship), has a much broader meaning in German than the closest English words "theory" and "science." A Wissenschaft is any organized body of knowledge, including the Geisteswissenschaften (Scholarship of Arts), which would not be considered true sciences in English usage. And Theorie applies to any systematically presented set of concepts, whether they are empirical, axiomatic, or philosophical. (Lehre comes into the same category, but cannot be properly translated. "Teaching," the closest equivalent, sounds dogmatic and off the mark. However, doctrine can be a translation for it as well.
"Thus when von Bertalanffy spoke of Allgemeine Systemtheorie, it was consistent with his view that he was proposing a new perspective, a new way of doing science. It was not directly consistent with an interpretation often put on "general system theory," to wit, that it is a (scientific) "theory of general systems." To criticize it as such is to shoot at straw men. Von Bertalanffy opened up something much broader and of much greater significance than a single theory (which, as we now know, can always be falsified and has usually an ephemeral existence): he created a new paradigm for the development of theories."
- 2006, John N. Warfield, AN INTRODUCTION TO SYSTEMS SCIENCE, World Scientific [5]
- 2001, Kenneth Bausch, The Emerging Consensus in Social Systems Theory. Kluwer Academic, London. ISBN: 0-306-46539-6
- 2004, Charles François, Encyclopedia of Systems and Cybernetics, K G Saur, Munich
- 1999, Charles François, Systemics and Cybernetics in a Historical Perspective
- 1996, Ervin Laszlo. Systems View of the World. Hampton Press, New Jersy. ISBN: 0-8076-0637-5
- 1982 Fritjof Capra, The Turning Point. Bantum Books. ISBN: 0-0053-01480-3
- 1985, Len Troncale. The Future of General System Research. Systems Research
- 1975, Gerald M. Weinberg An Introduction to General Systems Thinking (1975 ed., Wiley-Interscience) (2001 ed. Dorset House).
- 1968, Ludwig von Bertalanffy General System Theory: Foundations, Development, Applications New York: George Braziller
Comments
Hope you'll forgive my small intrusion here. I've made some minor edits that you should feel free to revert. Made them during a read through with a view to offering a few comments. There's a lot here that is very interesting, and you have a broad canvas, and I'm very sympathetically inclined. On reading through though, there were a few things that jarred; bold text is I think overused, it shouts too loud for me. The reading list is just too long to be helpful, it didn't seem to be obviously selective nor did it appear to be comprehensive. Some parts of the text are I thought, too much influenced affected by the intrusion of the writer's opinion - I noted especially the section on Warfield as being congratulatory rather than informative. I also thought there was an apparent excess of jargon and definitions, and a corresponding underuse of simple explanatory terms. So, when you talk of Discovery for instance, is this in the natural meaning? in which case doesn't need capitalization, or is it in some internally defined special sense, in which case it seems to need explanation or should else be avoided.Gareth Leng 04:18, 26 June 2007 (CDT)
- Your perspective is welcome and refreshing, I changed the bold, but want to keep it in the first paragraph because those words are important. Don't know what to say about the jargon, why else is a encyclopedia for? DId I miss your point? I deleted a couple obvious opinions of mine. Discovery is used by Warfield to label a stage of his methodology but it is used in the conventional "legal" sense. Definitions are important to us because we do redefine many concepts. I like to use them because they can explain a significant concept. Did I miss anything?
Thomas Mandel 00:48, 27 June 2007 (CDT)
Many thanks. Of course an article should introduce and explain key technical concepts (jargon).What I was sniping (gently I hope) at are capitalised phrases like "Total Systems Intervention"; the capitalization seems to suggest that these have a very specific meaning, and maybe they do, but if so they are not always explained. I'm not suggesting that you avoid all jargon, but perhaps it should either be explained or avoided.Gareth Leng 03:22, 27 June 2007 (CDT)
- Oh, I like to think of myself as the world's greatest promoter of simple explanation, (just kidding) I even have a name for it "Sympology" (not kidding)
Here my hands are tied, I can only report what is going on. But if it is of any consolation, systems theory insofar as it is a transdisciplinary science, must depend on plain language to make its point. The complexities we develop/investigate are best expressed by the metaphors and models we use, so we do not need complex words and hopefully the trend in the future will be tward simple/plain language. I do not agree with the school of thought which contends that comnplex/new ideas must have their own language/jargon. Nor is it possible, so thay say, to create a single universal language (which everyone would have to learn) We have no choice but to use plain language, that is, after we learn how to talk in that language. Thomas Mandel 16:25, 27 June 2007 (CDT)
- Re: Capitalization. I am capitalizing words which are capitalized in the field. Total Systems Intervention (TSI)is actually the proper name of a methodology. (It is good that the common definition is confused with the proper name at least in the sense that it can be understood by anyone.)Thomas Mandel
- Looks like this article is coming along Thomas, good work - keep it up! --Matt Innis (Talk) 19:59, 12 July 2007 (CDT)
- Well, can't say that I disagree with you. I was supposed to do this ten years ago. The big difference today is that there can be no me in it. There is just what happened. What is new is this compendium which Marcus says we never had before. I'm letting the organizaion happen by itself, but I know that after it settles down, I will read about it in Banathy's books. written ten twenty years before. One of the criticisms systems theory faces is that there is no theory. Well, true it is scattered all over the place, but the theory is there. So, writing in uncharted waters, I am wondering what it would take to write the theory...
"Everything is biased"
It is required that all information be included, let's not define all, so in that spirit, what is the alternative/other/ viewpoint? I didn't think there was an alternative/other viewpoint...So what is the alternative/other viewpoint? Thomas Mandel 00:07, 11 August 2007 (CDT)
Criticism's of systems theory
My advisor wrote this in response to the objections from Lynn's Education and Research Network.
a) “working together” means everyone thinking the same.
b)requires that individuals give up their individual beliefs for those of the community
c) systems theory is diametrically opposed to Christianity.
d) systems theory is the foundation upon which Hitler built his dictatorship
e) just as it is the foundation upon which Marxism and fascism are also both built?
f) Systems theory is a man-made concept, defiant of God and God’s will.
g) systems theory under girds communism, fascism and national socialism, all despotic governance structures enslaving people and defying the word of God."
Well Tom, what does one say.
Firstly, it is difficult to argue with biased rationality and total conviction....it leaves no room for discussion. To tell a BELIEVER that all belief constructs arise from Mankind by virtue of Man being there and being able to perceive and make sense of those perceptions is like trying to walk on water when you have no experience of this skill. But to be honest, all of us are BELIEVERS to some extent. We develop our worldviews when we are in a developmental period, and when we form into groups that give us our mutual support, we formulate paradigms that direct our modes of practice. I have met many a writer constrained by the boundaries of their own paradigm, unable to apprehend alternative views. This of course stands against the notion of Piaget's notion of operative intelligence, where there is a need for the individual to entertain a form of cognitive projection from which different perspectives can be apprehended and coordinated.
The fact of the matter is that there is absolutely no basis for the criticism of systems theory if it comes from someone with such a bounded cognitive condition. It is purely a local construction that when taken out of its paradigmatic box fails to leave a trail of substance. If they were to try to argue against systems thinking, then it would have to be on the basis of its (soft) constructivist nature, that a system is defined by a viewer who has a basic orientation and set of experiences, and these guide the practice of the defining the system. The theory of the system stands firm as a set of principles that derive from the axiomatic notion of holism. Having said this, the theory of the system holds little without the accompanying theory of cybernetics. They two float together in a self supporting couple. The theory of one needs the theory of the other to be practically useful.
One of the most interesting theoretical formulations to have developed over the last 3000 years comes from China through Taoist thinking (influenced as it is by Confucianism), which also strictly conforms to the notion of holism. It too is a system/cybernetics formulation of theory that is fundamentally more systemic than science.
However, in describing the notions of systems, one must always be careful. Some people might for instance define a system in terms of its parts each of which have purposes. They may then set up the notion of purposes in terms of goals. However, this relatively hard approach would often be anathema to the soft systems person, who believes in the appreciative system, and argues that it is difficult in a complex world to define the boundaries on any part, or to associate purposes with them. Even if this cannot be done, there is still the possibility of using systems constructs through the notion of holism to enable cybernetics processes to be explored. Indeed, perhaps it is possible to claim that systems provides a structure for cybernetics content....This is in fact the formulation that my own work takes, adopting principles of third cybernetics.
When one tries to decry the notion of the whole because people do not work together, there are clear reasons why this is the case, and the enlightened critic would try to read some of the voluminous theory (for instance my own) about why this does not occur. One of the principle causes is systemic pathology. Pathologies are endemic in systems, and they occur through many causes. One is that people do not understand other people. In the area of knowledge management for instance, there is the idea that all knowledge is locally created, and that people only understand others from their own experiences that has given them their tacit knowledge. For those who are really interested in being critical of systems theory, they should try moving beyond superficial and elementary reading, and dipping into deeper pools of knowledge. Of the criticisms below, I have not seen one that really holds any water. This is perhaps because they isolated statements are taken out of context, or simply that the writers are so constrained by their own paradigms that they are unable to take the time to read deeply into systems theory.
This is not to say that systems theory is correct and other paradigms are not. We each chose our modes of expression and languages. However, to decry one because of ignorance is not to be forgiven. (Prof) Maurice Yolles
Now, my question is where do go to find the counterview? Is it productive and useful if we asked those who know nothing about systems theory? Or do we go to those who have taken the time to learn enough about the subject to make an intelligent criticism?
Suggest following lead-in pgraph for general reader
System theory is a transdisciplinary and multi-perspective scientific field of inquiry concerned with the study of the interrelationships of the constituent elements of organized patterns (systems) of all types — material and immaterial, static and dynamic. Such systems consist of sets of elements that interact with one another, statically or dynamically, forming patterns making up a distinguishable ‘whole’, with attributes not found in the parts, and therefore characteristic of the system-as-a-whole. To paraphrase Erich Jantsch,[1] a system becomes observable and definable only through the interrelationships of its constituent elements. Examples of systems include:
- Mechanical: timepieces; automobiles, bridges;
- Human plus mechanical: flying a jet plane; playing a piano
- Biological: cells; organ systems (digestive); organisms;
- Ecological: forests; biosphere'
- Social: organized societies; clubs;
- Ideological: isms; philosophies;
- Procedural: measuring; grading; governmental;
- Hypothetical/theoretical/scientific: Copernican; Newtonian; Darwinian;
- Networks: World Wide Web.
Note that all such organized patterned wholes become observable as such only through the interrelationships among their constituent elements.
Ervin Laszlo contrasts the systems approach with the classical science approach referred to as reductionism, (reducing to a minimum), as a shifting of emphasis from parts to the organization of parts; from the "component to the dynamic" as he puts it. See text box to right. Systemists emphasize that it is through the mutually interactive relationships of the system's constituent elements that new properties of the whole arise, a process called 'emergence'. The late Bela H. Banathy regarded 'emergence' to be the "value" of systems theory; as this new whole has properties which are not found in the constituent elements. "We cannot understand the whole bit by bit" he explained.[1]This article describes the origins, scope, concepts, perspectives and contributions of system theory.
--Anthony.Sebastian (Talk) 20:18, 19 August 2007 (CDT)
Tony, let me say something. I don't know if I am saying it adequately but let me try. It is not the complexification of knowledge that systems theory is about, it is a completely different reality that we see. When we look at the reality in a systemic way, we are looking at different things. A systemic view is not a sophisticated version of the scientific view, it is looking at and seeing a different view. Thomas Mandel 01:26, 21 August 2007 (CDT)
Just to make the point clear, One of the fundamental ideas in systems theory is what Banathy tells us ""We cannot understand the whole bit by bit" Because systems theory is different, it is imperative that this difference be understood from the beginning. For it is in the betginning that the direction is chosen.
Need help with systems biology section leadin
Tony, I need your help. In the systems biology section, I copied a leadin from the systemsbiology website, I requested permission to reprint it but did not receive a reply. I have it hidden in the edit copy. Can you come up with a leadin for the systems biology section? What they write sounds good, except for the subsystem is a childsystem stuff. Let me know what you think?Thomas Mandel 23:54, 26 August 2007 (CDT)
Well here it is --Summary found at systems biology institute website --"In summary, systems are comprised of parts which interact. The interaction of these parts gives rise to new properties and functions which are key to the system. We call these new properties and functions "emergent properties". Because emergent properties are the result of interactions between the parts, they can not be attributed to any single parts of the system. This makes systems irreducible. A system is unlikely to be fully understood by taking it apart and studying each part on its own. (We cannot understand an author's message by studying individual words; we cannot appreciate a forest by looking at individual trees.) To understand systems, and to be able to fully understand a system's emergent properties, systems need be studied as a whole. This recognition that complex systems, especially life, are truly understood from knowledge of the interactions of their component parts is fundamental to systems biology and all the research at the Institute for Systems Biology."
You might try to make the first and last sentence consistent. Thomas Mandel 13:10, 27 August 2007 (CDT)
Comments
Hello Thomas. I came across your comprehensive article on Systems Theory and Systems Biology, I haven't had time to read it more carefully (there is a lot of information there, so do keep up the good work) but I think a mention of what electrical and control engineers and applied mathematicians know as a mathematical systems theory is conspicuously missing. This is an established field and goes under the AMS classification of 93--xx (systems theory; control), see http://www.ams.org/msc. Systems thinking has from early on been a central concept in modern control engineering and researchers in the field have contributed a great deal to the development of various rigorous mathematical concepts and tools for systems analysis and synthesis (for example, stability analysis) and now starting to be applied to fields like systems biology and complex networks.
I'm also puzzled why so much space is devoted to the opinion of Lynn from the LEARN website and why she should be given status as a sort of authority on the subject. In particular, her arguments seem to be leaning towards pseudoscience and begs the question of whether her opinion is suitable for inclusion in the article. Hendra I. Nurdin 21:47, 15 September 2007 (CDT)
- I was asked to present opposing thoughts and her thoughts are as opposing as it can get. Because the article is under construction, I temporaily included all her commentsThomas Mandel 00:34, 17 September 2007 (CDT)
After further reading
Oops ... Okay, after more careful reading this "system theory" is related to but not quite the same as the systems theory I was thinking of (as it is understood in (control) engineering, see, for example, [1]). May I suggest changing the name of this article to "Systems theory (philosophy)", to distinguish it to the systems theory of engineering? Thanks. Hendra I. Nurdin 00:29, 16 September 2007 (CDT)
- I do not understand why you don't first of all include your mathematical systems theory into the article, I don't know everything, and if you feel that mathematical systems theory is different and separate rename your article to mathematical systems theory? You are not suggesting that we rename our article so that you can use "systems theory" yourself? Thomas Mandel 21:08, 16 September 2007 (CDT)
I would like to propose that you consult someone with at least some familiarity with General Systems Theory to see what sort of adequate resolution might be found. Perhaps Anthony Sebastian. I think it might be useful to make systems theory a disambiguation page.
Philosophers know nothing about General Systems Theory, as far as I know, and this article doesn't particularly sound like philosophy to me. --Larry Sanger 21:31, 16 September 2007 (CDT)
Anthony Sebastian is not an expert in systems theory, AND systems theory is not just a philosophy, your people put that tag on it. I am sorry that some are not aware of our field, but isn't that what a encyclopedia is supposed to do? Control theory is related to Cybernetics, a certain kind of system. Note that her links refer to Wiener, the founder of cybernetics. Neither cybernetics nor control theory is more general than systems theory. Just because some people choose to refer to systems theory does not mean that their particular theory IS all of systems theory. From the article -- "Fritjof Capra summarizes in his book: The Turning Point; "Systems thinking is a discipline for seeing wholes. It is a framework for seeing interrelationships rather than things, for seeing patterns of change rather than static “snapshots.” It is a set of general principles—distilled over the course of the twentieth century, spanning fields as diverse as the physical and social sciences, engineering, and management. ...During the last thirty years, these tools have been applied to understand a wide range of corporate, urban, regional, economic, political, ecological, and even psychological systems. And systems thinking is a sensibility—for the subtle interconnectedness that gives living systems their unique character."
In the end it is what the field is doing that matters, and this field is populated by many many more than just control engineers. The term systems theory has been used for fifty years as a general designation and it is not correct for any particular aspect of systems to claim the name as its own. If that were so, then why not management systems too? Or any of the vast number of disciplines that use systems theory? Why not use the correct wording "control systems" they did it right on their pages "systems theory - control" Thomas Mandel 00:14, 17 September 2007 (CDT)
You might want to follow your o0wn instructions copied here - "The title (i.e., the word or phrase in the title) is used in multiple ways, and the sense discussed in the article is not the most common sense. For example, there is a line of cosmetics called "Philosophy"; the article about that might live at Philosophy (cosmetics). The article about deep thought continues to live at Philosophy--no parentheses needed. "
so that her article would be systems theory (control)
Thomas Mandel 00:28, 17 September 2007 (CDT)
- Many people doing Hendra's kind of systems theory would disagree that they use your kind of systems theory. I think the phrase "systems theory" is ambiguous and that neither Hendra's kind of systems theory nor your kind can "claim" the title Systems theory. So, I agree with the proposal at Talk:System theory that we call one article Systems theory (engineering) and the other one Systems theory (interdisciplinary field) or Systems theory (cybernetics) or General systems theory or whatever you prefer. -- Jitse Niesen 07:14, 17 September 2007 (CDT)
- Of course you have a source which supports your opinion, may I see it please? (transdisciplinary, not interdisciplinary)Thomas Mandel 09:09, 17 September 2007 (CDT)
See research paper
It may be helpful if you read the research paper published in the journal Systems Reseach and Behavoiral Science titled "Re-evaluating Systems Engineering as a Framework for Tackling Systems Issues by Stephen C. Cook and Timmothy L.J. Ferris. Syst. Res. Vol. 24. No. 2 169-181 (2007). They write from the University of South Australia. "As modern systems engineering practice concerns broader contextual issues than just the technological product systems, system engineers are comng to adopt a wider , more abstract position with respect to the nature of the system, and arriving at a view more consistent with the view held by other system thinking practitioners. In the newer understanding of systems engineering the systems of interest encompass the entire set of elements leading to the capability to make an impact in the world, that is: the end product system, the enabling system, the process system and the impact of of these systems in their environments of operation; a set of factors known collectively in Australian Defence circles as Fundamental Inputs to Capability
- ↑ Citation here