File:Penplot.jpg: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Dmitrii Kouznetsov
imported>Dmitrii Kouznetsov
Line 21: Line 21:


<math>
<math>
F(z\!+\!1)=\mathrm{tet}\Big( F(z))
F(z\!+\!1)=\mathrm{tet}\big( F(z)\big)
</math>
</math>



Revision as of 02:16, 4 September 2014

Summary

Title / Description


plot of the natural pension , id set, pentation to base <maht>\mathrm e=\exp(1)\approx 2.71</math>, id set, pentation to base ; the thik black curve shows ; the thik black curve shows .

The thin curves show the two asymptotics of pentation and the error of the linear approximation

Citizendium author
& Copyright holder


Copyright © Dmitrii Kouznetsov.
See below for licence/re-use information.
Date created


2014
Country of first publication


Japan, Germany
Notes


Pentation is described at TORI, http://mizugadro.mydns.jp/t/index.php/Pentation and also (In Russian) in the book [1]
Other versions


The image is borrowed from TORI, http://mizugadro.mydns.jp/t/index.php/File:Penplot.jpg
Using this image on CZ


Please click here to add the credit line, then copy the code below to add this image to a Citizendium article, changing the size, alignment, and caption as necessary.

{{Image|Penplot.jpg|right|350px|Add image caption here.}}

Image issue? Contact us via the email below.

Please send email to manager A T citizendium.org .


Licensing

This media, Penplot.jpg, is licenced under the Creative Commons Attribution 3.0 Unported License

You are free: To Share — To copy, distribute and transmit the work; To Remix — To adapt the work.
Under the following conditions: Attribution — You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).
For any reuse or distribution, you must make clear to others the licence terms of this work (the best way to do this is with a link to this licence's web page). Any of the above conditions can be waived if you get permission from the copyright holder. Nothing in this licence impairs or restricts the author's moral rights.
Read the full licence.

Description

Pentation pen is superfunction of tetration to the same base. Natural pentation is solution of the transfer equation

constructed with regular iteration at the smallest real fixed point of tetration; is solution of equation

with additional condition .

The real-real plot is shown with thick black curve.

The thin curves show approximations of pentation.

The red horizontal line shows the fixed point of tetration, .

The thin blue curve shows the asymptotic of pentation at large negative values of the real part of the argument,

where

and

The thin green line shown the deviation from the linear approximation

The deviation is denoted as

In the range , the deviation is small, the linear approximation provides 2 correct significant digits. In order to make the deviation visible, it is scaled with factor 10, so, is plotted.

Properties of tetration are described in publications [2]

The regular iteration in construction of superfunction is described at TORI, http://mizugadro.mydns.jp/t/index.php/Regular_iteration and also in [3][4][5].

References

  1. https://www.morebooks.de/store/ru/book/Суперфункции/isbn/978-3-659-56202-0
    http://www.ils.uec.ac.jp/~dima/BOOK/202.pdf
    http://mizugadro.mydns.jp/BOOK/202.pdf Д.Кузнецов. Суперфункции. Lambert Academic Publishing, 2014. (In Russian), page 268, Figure 19.3.
  2. http://www.ams.org/mcom/2009-78-267/S0025-5718-09-02188-7/home.html http://www.ils.uec.ac.jp/~dima/PAPERS/2009analuxpRepri.pdf http://mizugadro.mydns.jp/PAPERS/2009analuxpRepri.pdf D.Kouznetsov. (2009). Solution of F(z+1)=exp(F(z)) in the complex z-plane. Mathematics of Computation, 78: 1647-1670. DOI:10.1090/S0025-5718-09-02188-7.
  3. http://www.ams.org/journals/mcom/2010-79-271/S0025-5718-10-02342-2/home.html D.Kouznetsov, H.Trappmann. Portrait of the four regular super-exponentials to base sqrt(2). Mathematics of Computation, 2010, v.79, p.1727-1756.
  4. http://www.springerlink.com/content/qt31671237421111/fulltext.pdf?page=1 D.Kouznetsov, H.Trappmann. Superfunctions and square root of factorial. Moscow University Physics Bulletin, 2010, v.65, No.1, p.6-12.
  5. http://www.springerlink.com/content/u712vtp4122544x4 D.Kouznetsov. Holomorphic extension of the logistic sequence. Moscow University Physics Bulletin, 2010, No.2, p.91-98. http://tori.ils.uec.ac.jp/2012OR/2012or.pdf D. Kouznetsov. Superfunctions for optical amplifiers. Preprint ILS UEC, 2012

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current18:52, 11 March 2022Thumbnail for version as of 18:52, 11 March 20221,266 × 2,100 (240 KB)Maintenance script (talk | contribs)== Summary == Importing file

The following page uses this file:

Metadata