Filog.cin: Difference between revisions
Jump to navigation
Jump to search
imported>Dmitrii Kouznetsov (Created page with " // '''Filog.cin''' is the C++ code that defines function Filog that evaluates the fixed point of logarithm // for given complex value of logarithm of its base. The...") |
imported>John Stephenson (remove unnecessary categories) |
||
Line 41: | Line 41: | ||
[[Tetration]], | [[Tetration]], | ||
[[Logarithm]] | [[Logarithm]] | ||
Revision as of 08:39, 2 October 2013
// Filog.cin is the C++ code that defines function Filog that evaluates the fixed point of logarithm // for given complex value of logarithm of its base. The Filog(z) returns soluiton of the equation //
// The algorithm below expresses Filog through the Tania function; the routines for the Tania are also supplied. z_type ArcTania(z_type z) {return z + log(z) - 1. ;}
z_type ArcTaniap(z_type z) {return 1. + 1./z ;}
z_type TaniaTay(z_type z) { int n; z_type s; s=1.+z*(.5+z*(1./16.+z*(-1./192.+z*(-1./3072.+z*(1.3/6144.+z*(-4.7/147456. //+z*(7.3/4128768.) //some reserve term )))))); DO(n,3) s+=(z-ArcTania(s))/ArcTaniap(s); return s ; }
z_type TaniaNega(z_type z){int n;z_type s=exp(z-exp(z)+1.); DO(n,4) s+=(z-ArcTania(s))/ArcTaniap(s); return s ; }
z_type TaniaBig(z_type z){int n;z_type s=z; s=z-log(s)+1.; DO(n,3) s+=(z-ArcTania(s))/ArcTaniap(s); return s ; } z_type TaniaS(z_type z){int n; z_type s,t=z+z_type(2.,-M_PI);t*=2./9.; t=I*sqrt(t); s=-1.+t*(3.+t*(-3.+t*(.75+t*(.3+t*(.9/16.+t*(-.3/7.+t*(-12.51/224. //+t*(-.9/28.) ))))))); DO(n,3) s+=(z-ArcTania(s))/ArcTaniap(s); return s ; }
z_type Tania(z_type z){ z_type t; if( fabs(Im(z))< M_PI && Re(z)<-2.51) return TaniaNega(z); if( abs(z)>7. || Re(z)>3.8 ) return TaniaBig(z); if( Im(z) > .7 ) return TaniaS(z); if( Im(z) < -.7) return conj(TaniaS(conj(z))); return TaniaTay(z); }
z_type Filog(z_type z){ return Tania(z_type(-1.,-M_PI)+log(z))/(-z);}
Keywords
Tania function, Fixed point of logarithm, Filog, Fixed point, Tetration, Logarithm