Space (mathematics): Difference between revisions
imported>Boris Tsirelson (→Modern approach: link) |
imported>Boris Tsirelson (→Modern approach: link) |
||
Line 1: | Line 1: | ||
== Modern approach== | == Modern approach== | ||
Nowadays mathematics uses a wide assortment of spaces. Many of them | Nowadays mathematics uses a wide assortment of spaces. Many of them |
Revision as of 14:10, 7 July 2009
Modern approach
Nowadays mathematics uses a wide assortment of spaces. Many of them are quite far from the ancient geometry. Here is a rough and incomplete classification according to the applicable questions (rather than answers). We start with a basic class.
Space | Stipulates |
---|---|
Topological | Convergence, continuity. Open sets, closed sets. |
Straight lines are defined in projective spaces. In addition, all questions applicable to topological spaces apply also to projective spaces, since each projective space (over the reals) "downgrades" to the corresponding topological space. Such relations between classes of spaces are shown below.
Space | Is richer than | Stipulates |
---|---|---|
Projective | Topological space. | Straight lines. |
Affine | Projective space. | Parallel lines. |
Linear | Affine space. | Origin. Vectors. |
Linear topological | Linear space. Topological space. | |
Metric | Topological space. | Distances. |
Normed | Linear topological space. Metric space. | |
Inner product | Normed space. | Angles. |
Euclidean | Affine space. Metric space. | Angles. |
A finer classification uses answers to some (applicable) questions.
Space | Special cases | Properties |
---|---|---|
Linear | three-dimensional | Basis of 3 vectors. |
finite-dimensional | A finite basis. | |
Metric | complete | All Cauchy sequences converge. |
Topological | compact | Every open covering has a finite sub-covering. |
connected | Only trivial open-and-closed sets. | |
Normed | Banach | Complete. |
Inner product | Hilbert | Complete. |
Waiving distances and angles while retaining volumes (of geometric bodies) one moves toward measure theory and the corresponding spaces listed below. Besides the volume, a measure generalizes area, length, mass (or charge) distribution, and also probability distribution, according to Andrei Kolmogorov's approach to probability theory.
Space | Stipulates |
---|---|
Measurable | Measurable sets and functions. |
Measure | Measures and integrals. |
Measure space is richer than measurable space. Also, Euclidean space is richer than measure space.
Space | Special cases | Properties |
---|---|---|
Measurable | standard | Isomorphic to a Polish space with the Borel σ-algebra. |
Measure | standard | Isomorphic mod 0 to a Polish space with a finite Borel measure. |
σ-finite | The whole space is a countable union of sets of finite measure. | |
finite | The whole space is of finite measure. | |
Probability | The whole space is of measure 1. |
These spaces are less geometric. In particular, the idea of dimension, applicable to topological spaces, therefore to all spaces listed in the previous tables, does not apply to measure spaces. Manifolds are much more geometric, but they are not called spaces. In fact, "spaces" are just mathematical structures (as defined by Nikolas Bourbaki) that often (but not always) are more geometric than other structures.