Factorial/Code/LogFactorialZ: Difference between revisions
Jump to navigation
Jump to search
imported>Dmitrii Kouznetsov (New page: // 200px|right // Generator of figure http://en.citizendium.org/wiki/Image:LogFactorialZ.jpg // plot of LogFactorial(z) in the complex z-plane. // In orde...) |
imported>Chris Day m (LogFactorialZ.jpg/code moved to Factorial/Code/LogFactorialZ) |
(No difference)
|
Revision as of 23:42, 18 February 2009
//
// Generator of figure http://en.citizendium.org/wiki/Image:LogFactorialZ.jpg // plot of LogFactorial(z) in the complex z-plane. // In order to complie this program, files //ContourPlot/code/ado.cin (function that makes header of the eps file) and //ContourPlot/code/conto.cin (function which draws a level) should be loaded. // // Copyleft 2009 by Dmitrii Kouznetsov // Please, indicate the source and modifications (if any) at the use.
#include <math.h> #include <stdio.h> #include <stdlib.h> #define DB double #define DO(x,y) for(x=0;x<y;x++) #include <complex.h> #define z_type complex<double> #define Re(x) x.real() #define Im(x) x.imag() #define I z_type(0.,1.)
DB expaunoc[31]= {1., 0.5772156649015329, -0.6558780715202537, -0.04200263503409518, 0.16653861138229112, -0.04219773455554465, -0.009621971527877027, 0.0072189432466631676, -0.0011651675918590183, -0.0002152416741149077, 0.00012805028238804805,-0.00002013485478102872,-1.2504934818746705e-6, 1.1330272320364543e-6, -2.0563384228733383e-7, 6.1160952968819515e-9, 5.00200766282674e-9, -1.1812748557105124e-9, 1.0434320074637071e-10, 7.782441358017422e-12, -3.696820627396846e-12, 5.10702591327572e-13, -2.0650148258027912e-14,-6.217248937900877e-15, 7.771561172376096e-16, -9.992007221626409e-16, -3.3306690738754696e-16, 5.551115123125783e-16, -1.1102230246251565e-16, 1.3322676295501878e-15, 9.992007221626409e-16 }; z_type expauno(z_type z) {int n,m; DB x,y; z_type s; s=expaunoc[24]; x=Re(z);if(x<-.9) return expauno(z+1.)-log(z+1.); if(x>.5) return expauno(z-1.)+log(z); y=Im(z); if(fabs(y)>.7)return expauno(z/2.)+expauno(z/2.-.5)+z*log(2.)-log(sqrt(M_PI)); for(n=23; n>=0; n--) { s*=z;s+=expaunoc[n]; } return -log(s); }
z_type fracti(z_type z){ z_type s; int n; DB a[17]= {0.0833333333333333333, 0.0333333333333333333, .252380952380952381, .525606469002695418, 1.01152306812684171, 1.51747364915328740, 2.26948897420495996, 3.00991738325939817, 4.02688719234390123, 5.00276808075403005, 6.28391137081578218, 7.49591912238403393, 9.04066023436772670, 10.4893036545094823, 12.2971936103862059, 13.9828769539924302, 16.0535514167049355 }; /* a[0]=1./12.; a[1]=1./30.; a[2]=53./210.; a[3]=195./371.; a[4]=22999./22737.; a[5]=29944523./19773142.; a[6]=109535241009./48264275462.; a[7]=29404527905795295658./9769214287853155785.; a[8]=455377030420113432210116914702./113084128923675014537885725485.; a[9]=26370812569397719001931992945645578779849./5271244267917980801966553649147604697542.; a[10]=152537496709054809881638897472985990866753853122697839./24274291553105128438297398108902195365373879212227726.; a[11]= too long... */ //s=a[16]/(z+19./(z+25./(z+40.))); s=a[16]/(z+19./(z+25./(z))); for(n=15;n>=0;n--) s=a[n]/(z+s); return s + log(2.*M_PI)/2. - z + (z+.5)*log(z); }
z_type lofac(z_type z){DB x,y,r; x=Re(z); y=Im(z); if(fabs(y)>5 ) return fracti(z); if(x>0 && (x-3)*(x-3.)+y*y >25) return fracti(z); return expauno(z); }
#include "conto.cin" main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d, cu,cd; int M=421,M1=M+1; int N=361,N1=N+1; DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array. char v[M1*N1]; // v is working array FILE *o;o=fopen("LogFactorialZ.eps","w");ado(o,0,0,182,142); fprintf(o,"91 71 translate\n 10 10 scale\n"); DO(m,M1) X[m]=-8.2+.04*(m-.5); DO(n,N1) Y[n]=-7. +.04*(n-.5); for(m=-8;m<9;m++) { if(m==0){M(m,-6.2)L(m,6.2)} else {M(m,-6)L(m,6)} } for(n=-6;n<7;n++) { M( -8,n)L(8,n)} fprintf(o,".006 W 0 0 0 RGB S\n"); DO(m,M1)DO(n,N1){g[m*N1+n]=9999; f[m*N1+n]=9999;} DO(m,M1){x=X[m]; // printf("%2.0fd\n",0.); DO(n,N1){y=Y[n]; z=z_type(x,y); c=lofac(z); //c= fracti(z); //d= expauno(z); // d= exp(fracti(z))*(z+1.) ; //p=abs(c-d)/(abs(c)+abs(d)); p=-log(p)/log(10.); p=Re(c);q=Im(c); if(p>-999 && p<999 && fabs(p)> 1.e-9 && fabs(p-1.)>1.e-9) g[m*N1+n]=p; if(q>-999 && q<999 && fabs(q)> 1.e-9) f[m*N1+n]=q; }} p=2;q=1; for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, (-4.+.1*n),-q, q); fprintf(o,".006 W 0 1 0 RGB S\n"); for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, (-3.+.1*n),-q, q); fprintf(o,".006 W 0 1 0 RGB S\n"); for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, (-2.+.1*n),-q, q); fprintf(o,".006 W 0 1 0 RGB S\n"); for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, (-1.+.1*n),-q, q); fprintf(o,".006 W 0 1 0 RGB S\n"); for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, ( 0.+.1*n),-q, q); fprintf(o,".006 W 0 1 0 RGB S\n"); for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, ( 1.+.1*n),-q, q); fprintf(o,".006 W 0 1 0 RGB S\n"); for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, ( 2.+.1*n),-q, q); fprintf(o,".006 W 0 1 0 RGB S\n"); for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, ( 3.+.1*n),-q, q); fprintf(o,".006 W 0 1 0 RGB S\n"); // for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (-4.+.1*n),-q, q); fprintf(o,".006 W 1 0 0 RGB S\n"); for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (-3.+.1*n),-q, q); fprintf(o,".006 W 1 0 0 RGB S\n"); for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (-2.+.1*n),-q, q); fprintf(o,".006 W 1 0 0 RGB S\n"); for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (-1.+.1*n),-q, q); fprintf(o,".006 W 1 0 0 RGB S\n"); for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, ( 0.+.1*n),-q, q); fprintf(o,".006 W 0 0 1 RGB S\n"); for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, ( 1.+.1*n),-q, q); fprintf(o,".006 W 0 0 1 RGB S\n"); for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, ( 2.+.1*n),-q, q); fprintf(o,".006 W 0 0 1 RGB S\n"); for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, ( 3.+.1*n),-q, q); fprintf(o,".006 W 0 0 1 RGB S\n"); // conto(o,f,w,v,X,Y,M,N, (-24. ),-4*p,4*p); fprintf(o,".020 W 1 0 0 RGB S\n"); conto(o,f,w,v,X,Y,M,N, (-20. ),-4*p,4*p); fprintf(o,".020 W 1 0 0 RGB S\n"); conto(o,f,w,v,X,Y,M,N, (-16. ),-4*p,4*p); fprintf(o,".020 W 1 0 0 RGB S\n"); conto(o,f,w,v,X,Y,M,N, (-12. ),-4*p,4*p); fprintf(o,".020 W 1 0 0 RGB S\n"); conto(o,f,w,v,X,Y,M,N, (-8. ),-4*p,4*p); fprintf(o,".020 W 1 0 0 RGB S\n"); conto(o,f,w,v,X,Y,M,N, (-7. ),-p,p); fprintf(o,".020 W 1 0 0 RGB S\n"); conto(o,f,w,v,X,Y,M,N, (-6. ),-p,p); fprintf(o,".020 W 1 0 0 RGB S\n"); conto(o,f,w,v,X,Y,M,N, (-5. ),-p,p); fprintf(o,".020 W 1 0 0 RGB S\n"); conto(o,f,w,v,X,Y,M,N, (-4. ),-p,p); fprintf(o,".020 W 1 0 0 RGB S\n"); conto(o,f,w,v,X,Y,M,N, (-3. ),-p,p); fprintf(o,".020 W 1 0 0 RGB S\n"); conto(o,f,w,v,X,Y,M,N, (-2. ),-p,p); fprintf(o,".020 W 1 0 0 RGB S\n"); conto(o,f,w,v,X,Y,M,N, (-1. ),-p,p); fprintf(o,".020 W 1 0 0 RGB S\n"); conto(o,f,w,v,X,Y,M,N, ( 0. ),-8*p,8*p); fprintf(o,".020 W 1 0 1 RGB S\n"); conto(o,f,w,v,X,Y,M,N, ( 1. ),-p,p); fprintf(o,".020 W 0 0 1 RGB S\n"); conto(o,f,w,v,X,Y,M,N, ( 2. ),-p,p); fprintf(o,".020 W 0 0 1 RGB S\n"); conto(o,f,w,v,X,Y,M,N, ( 3. ),-p,p); fprintf(o,".020 W 0 0 1 RGB S\n"); conto(o,f,w,v,X,Y,M,N, ( 4. ),-p,p); fprintf(o,".020 W 0 0 1 RGB S\n"); conto(o,f,w,v,X,Y,M,N, ( 5. ),-p,p); fprintf(o,".020 W 0 0 1 RGB S\n"); conto(o,f,w,v,X,Y,M,N, ( 6. ),-p,p); fprintf(o,".020 W 0 0 1 RGB S\n"); conto(o,f,w,v,X,Y,M,N, ( 7. ),-p,p); fprintf(o,".020 W 0 0 1 RGB S\n"); conto(o,f,w,v,X,Y,M,N, ( 8. ),-4*p,4*p); fprintf(o,".020 W 0 0 1 RGB S\n"); conto(o,f,w,v,X,Y,M,N, (12. ),-4*p,4*p); fprintf(o,".020 W 0 0 1 RGB S\n"); conto(o,f,w,v,X,Y,M,N, (16. ),-4*p,4*p); fprintf(o,".020 W 0 0 1 RGB S\n"); conto(o,f,w,v,X,Y,M,N, (20. ),-4*p,4*p); fprintf(o,".020 W 0 0 1 RGB S\n"); conto(o,f,w,v,X,Y,M,N, (24. ),-4*p,4*p); fprintf(o,".020 W 0 0 1 RGB S\n"); // conto(o,g,w,v,X,Y,M,N, (-24. ),-4*p,4*p); fprintf(o,".020 W 0 0 0 RGB S\n"); conto(o,g,w,v,X,Y,M,N, (-20. ),-4*p,4*p); fprintf(o,".020 W 0 0 0 RGB S\n"); conto(o,g,w,v,X,Y,M,N, (-16. ),-4*p,4*p); fprintf(o,".020 W 0 0 0 RGB S\n"); conto(o,g,w,v,X,Y,M,N, (-12. ),-4*p,4*p); fprintf(o,".020 W 0 0 0 RGB S\n"); conto(o,g,w,v,X,Y,M,N, (-8. ),-4*p,4*p); fprintf(o,".020 W 0 0 0 RGB S\n"); conto(o,g,w,v,X,Y,M,N, (-7. ),-p,p); fprintf(o,".020 W 0 0 0 RGB S\n"); conto(o,g,w,v,X,Y,M,N, (-6. ),-p,p); fprintf(o,".020 W 0 0 0 RGB S\n"); conto(o,g,w,v,X,Y,M,N, (-5. ),-p,p); fprintf(o,".020 W 0 0 0 RGB S\n"); conto(o,g,w,v,X,Y,M,N, (-4. ),-p,p); fprintf(o,".020 W 0 0 0 RGB S\n"); conto(o,g,w,v,X,Y,M,N, (-3. ),-p,p); fprintf(o,".020 W 0 0 0 RGB S\n"); conto(o,g,w,v,X,Y,M,N, (-2. ),-p,p); fprintf(o,".020 W 0 0 0 RGB S\n"); conto(o,g,w,v,X,Y,M,N, (-1. ),-p,p); fprintf(o,".020 W 0 0 0 RGB S\n"); conto(o,g,w,v,X,Y,M,N, ( 0. ),-8*p,8*p); fprintf(o,".020 W 0 0 0 RGB S\n"); conto(o,g,w,v,X,Y,M,N, ( 1. ),-p,p); fprintf(o,".020 W 0 0 0 RGB S\n"); conto(o,g,w,v,X,Y,M,N, ( 2. ),-p,p); fprintf(o,".020 W 0 0 0 RGB S\n"); conto(o,g,w,v,X,Y,M,N, ( 3. ),-p,p); fprintf(o,".020 W 0 0 0 RGB S\n"); conto(o,g,w,v,X,Y,M,N, ( 4. ),-p,p); fprintf(o,".020 W 0 0 0 RGB S\n"); conto(o,g,w,v,X,Y,M,N, ( 5. ),-p,p); fprintf(o,".020 W 0 0 0 RGB S\n"); conto(o,g,w,v,X,Y,M,N, ( 6. ),-p,p); fprintf(o,".020 W 0 0 0 RGB S\n"); conto(o,g,w,v,X,Y,M,N, ( 7. ),-p,p); fprintf(o,".020 W 0 0 0 RGB S\n"); conto(o,g,w,v,X,Y,M,N, ( 8. ),-4*p,4*p); fprintf(o,".020 W 0 0 0 RGB S\n"); conto(o,g,w,v,X,Y,M,N, (12. ),-4*p,4*p); fprintf(o,".020 W 0 0 0 RGB S\n"); conto(o,g,w,v,X,Y,M,N, (16. ),-4*p,4*p); fprintf(o,".020 W 0 0 0 RGB S\n"); conto(o,g,w,v,X,Y,M,N, (20. ),-4*p,4*p); fprintf(o,".020 W 0 0 0 RGB S\n"); conto(o,g,w,v,X,Y,M,N, (24. ),-4*p,4*p); fprintf(o,".020 W 0 0 0 RGB S\n"); // #include"plofu.cin" M(-1,0)L(-8.2,0) fprintf(o,"0 0 0 RGB 0.05 W [.07 .12] .1 setdash S\n"); fclose(o); fprintf(o,"showpage\n\%\%\%Trailer"); fclose(o); //system( "ggv LogFactorialZ.eps"); // for linux system("open LogFactorialZ.eps"); //for macintosh system("ps2pdf LogFactorialZ.eps"); getchar(); system("killall Preview");//for macintosh }
// End of generator of figure http://en.citizendium.org/wiki/Image:LogFactorialZ.jpg