Derivation (mathematics): Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Richard Pinch
(→‎Universal derivation: description of universal derivation)
imported>Richard Pinch
(rearranged wording)
Line 2: Line 2:
In [[mathematics]], a '''derivation''' is a map which has formal algebraic properties generalising those of the [[derivative]].
In [[mathematics]], a '''derivation''' is a map which has formal algebraic properties generalising those of the [[derivative]].


Let ''R'' be a [[ring (mathematics)]] and ''A'' an ''R''-algebra (''A'' is a ring containing a copy of ''R'' in the [[centre of a ring|centre]]).  A derivation is an ''R''-linear map ''D'' with the property that
Let ''R'' be a [[ring (mathematics)]] and ''A'' an ''R''-algebra (''A'' is a ring containing a copy of ''R'' in the [[centre of a ring|centre]]).  A derivation is an ''R''-linear map ''D'' from ''A'' to some ''A''-module ''M'' with the property that


:<math>D(ab) = a.D(b) + D(a).b .\,</math>
:<math>D(ab) = a.D(b) + D(a).b .\,</math>
Line 17: Line 17:


==Universal derivation==
==Universal derivation==
There is a ''universal'' derivation (Ω,''d'') such that
There is a ''universal'' derivation (Ω,''d'') with a [[universal property]].  Given a derivation ''D'':''A'' → ''M'', there is a unique ''A''-linear ''f'':Ω → ''M'' such that ''D'' = ''d''.''f''.  Hence


:<math> \operatorname{Der}_R(A,M) = \operatorname{Hom}_A(\Omega,M) \,</math>
:<math> \operatorname{Der}_R(A,M) = \operatorname{Hom}_A(\Omega,M) \,</math>
Line 35: Line 35:
:<math>d : a \mapsto 1 \otimes a - a \otimes 1 \pmod{J^2} .\,</math>.
:<math>d : a \mapsto 1 \otimes a - a \otimes 1 \pmod{J^2} .\,</math>.


The pair (Ω,''d'') has a [[universal property]].  Given a derivation ''D'':''A'' → ''M'', there is a unique ''A''-linear ''f'':Ω → ''M'' such that ''D'' = ''d''.''f''.
This is the universal derivation.


==References==
==References==
* {{cite book | author=Serge Lang | authorlink=Serge Lang | title=Algebra | edition=3rd ed | publisher=[[Addison-Wesley]] | year=1993 | isbn=0-201-55540-9 | pages=746-749 }}
* {{cite book | author=Serge Lang | authorlink=Serge Lang | title=Algebra | edition=3rd ed | publisher=[[Addison-Wesley]] | year=1993 | isbn=0-201-55540-9 | pages=746-749 }}

Revision as of 15:41, 21 December 2008

This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In mathematics, a derivation is a map which has formal algebraic properties generalising those of the derivative.

Let R be a ring (mathematics) and A an R-algebra (A is a ring containing a copy of R in the centre). A derivation is an R-linear map D from A to some A-module M with the property that

The constants of D are the elements mapped to zero. The constants include the copy of R inside A.

A derivation "on" A is a derivation from A to A.

Linear combinations of derivations are again derivations, so the derivations from A to M form an R-module, denoted DerR(A,M).

Examples

Universal derivation

There is a universal derivation (Ω,d) with a universal property. Given a derivation D:AM, there is a unique A-linear f:Ω → M such that D = d.f. Hence

as a functorial isomorphism.

Consider the multiplication map μ on the tensor product (over R)

defined by . Let J be the kernel of μ. We define the module of differentials

as an ideal in , where the A-module structure is given by A acting on the first factor, that is, as . We define the map d on Ω by

.

This is the universal derivation.

References