Tetration/Bibliography: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Dmitrii Kouznetsov
(draft)
 
imported>Dmitrii Kouznetsov
(If the structure is correct, I add more refs)
Line 15: Line 15:


Tetration for base <math>b\!=\!\mathrm{e}</math>
Tetration for base <math>b\!=\!\mathrm{e}</math>
<ref name="k">D.Kouznetsov. Solutions of <math>F(z+1)=\exp(F(z))</math> in the complex <math>z</math>plane. [[Mathematics of Computation]], 2008, in press; preprint: http://www.ils.uec.ac.jp/~dima/PAPERS/analuxp99.pdf</ref> and <math>b=2</math>.
<ref name="k">D.Kouznetsov. Solutions of <math>F(z+1)=\exp(F(z))</math> in the complex <math>z</math>plane. [[Mathematics of Computation]], 2008, in press; preprint: http://www.ils.uec.ac.jp/~dima/PAPERS/analuxp99.pdf</ref>


Linear and piece-vice approximation of tetration.
Linear and piece-vice approximation of tetration.

Revision as of 04:45, 5 November 2008

This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
Code [?]
 
A list of key readings about Tetration.
Please sort and annotate in a user-friendly manner. For formatting, consider using automated reference wikification.

Ethimology of tetration [1].

Tetration for base [2].

Tetration for base [3]

Linear and piece-vice approximation of tetration. [4] [3].

Tetration for [3]

Solutions of equation : [5] [3]

Application of tetration [6] [4] [7] [2].

Ackermann Function [7] [2].

Additional literature around [8]


  1. R.L.Goodstein (1947). "Transfinite ordinals in recursive number theory". Journal of Symbolic Logic 12.
  2. 2.0 2.1 2.2 D.Kouznetsov. Ackermann functions of complex argument. Preprint of the Institute for Laser Science, UEC, 2008. http://www.ils.uec.ac.jp/~dima/PAPERS/2008ackermann.pdf Cite error: Invalid <ref> tag; name "k2" defined multiple times with different content Cite error: Invalid <ref> tag; name "k2" defined multiple times with different content
  3. 3.0 3.1 3.2 3.3 D.Kouznetsov. Solutions of in the complex plane. Mathematics of Computation, 2008, in press; preprint: http://www.ils.uec.ac.jp/~dima/PAPERS/analuxp99.pdf
  4. 4.0 4.1 M.H.Hooshmand. ”Ultra power and ultra exponential functions”. Integral Transforms and Special Functions 17 (8), 549-558 (2006) Cite error: Invalid <ref> tag; name "uxp" defined multiple times with different content
  5. H.Kneser. “Reelle analytische L¨osungen der Gleichung '('(x)) = ex und verwandter Funktionalgleichungen”. Journal f¨ur die reine und angewandte Mathematik, 187 (1950), 56-67.
  6. P.Walker. Infinitely differentiable generalized logarithmic and exponential functions. Mathematics of computation, 196 (1991), 723-733.
  7. 7.0 7.1 W.Ackermann. ”Zum Hilbertschen Aufbau der reellen Zahlen”. Mathematische Annalen 99(1928), 118-133
  8. A.Knoebel. ”Exponentials Reiterated.” Amer. Math. Monthly 88 (1981), 235-252.