Gaussian units: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Paul Wormer
No edit summary
imported>Paul Wormer
No edit summary
Line 1: Line 1:
{{subpages}}
{{subpages}}
In [[physics]], in particular in [[electromagnetism|electromagnetic theory]], '''Gaussian units''' are a set of units for electric and magnetic quantities. The units are named for the German mathematician and physicist [[Carl Friedrich Gauss]], who was the first to define magnetic units.
The most common and most elaborate set of units are the [[SI|SI units]] (formerly known as metric or MKSA units). Their main advantage is that they are very widespread  and well defined by international committees for all different areas of engineering and science.  The entire engineering world uses SI units, so almost any discussion of electrical equipment or experimental apparatus is nowadays in terms of SI units.
The main advantage of Gaussian units is that they simplify more than the SI units the fundamental physical issues and theoretical relations involving electromagnetic phenomena. Especially, the theories of [[relativity]] and [[electrodynamics]] are simpler, more transparent and more
elegant in Gaussian units than in SI units. In addition, the various formulas of electromagnetism
are easier to remember in Gaussian units than in SI units. Because they are  superior for fundamental physical questions, it is  unlikely that Gaussian units will ever be completely abandoned.
==Conversion of electric units==
==Conversion of electric units==
<div align="center">
<div align="center">

Revision as of 10:43, 13 July 2008

This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In physics, in particular in electromagnetic theory, Gaussian units are a set of units for electric and magnetic quantities. The units are named for the German mathematician and physicist Carl Friedrich Gauss, who was the first to define magnetic units.

The most common and most elaborate set of units are the SI units (formerly known as metric or MKSA units). Their main advantage is that they are very widespread and well defined by international committees for all different areas of engineering and science. The entire engineering world uses SI units, so almost any discussion of electrical equipment or experimental apparatus is nowadays in terms of SI units.

The main advantage of Gaussian units is that they simplify more than the SI units the fundamental physical issues and theoretical relations involving electromagnetic phenomena. Especially, the theories of relativity and electrodynamics are simpler, more transparent and more elegant in Gaussian units than in SI units. In addition, the various formulas of electromagnetism are easier to remember in Gaussian units than in SI units. Because they are superior for fundamental physical questions, it is unlikely that Gaussian units will ever be completely abandoned.

Conversion of electric units


Symbol Property SI Unit Factor Gaussian

I Electric current ampere (A) 10c statampere (statA)
Q Charge coulomb(C) 10c statcoulomb (statC)
V Electric potential volt (V) 106/c statvolt (statV)
R Resistance ohm (Ω) 105/c2 statohm (statΩ)
G Conductance siemens (S) 10−5c2 statsiemens (statS)
L Self-inductance henry (H) 105/c2 abhenry (abH)
C Capacitance farad (F) 10−5c2 cm
E Electric field V/m 104/c statV/cm
ρ Electric charge density C/m3 c/105 statC/cm3
D Electric displacement C/m2 4π10-3c statV/cm

c is the speed of light in m/s (≈ 3⋅108 m/s).
Example: 1 A = 10c statA.

Conversion of magnetic units

Gaussian units are the same as cgs emu for magnetostatics.

Mx = maxwell, G = gauss, Oe = oersted ; Wb = weber, V = volt, s = second, T = tesla, m = meter, A = ampere, J = joule, kg = kilogram, H = henry


SymbolProperty Gaussian → SI

Φ magnetic flux 1 Mx → 10−8 Wb = 10−8 V⋅s
B magnetic flux density 1 G → 10−4 T = 10−4 Wb/m2
magnetic induction
H magnetic field 1 Oe → 103/(4π) A/m
m magnetic moment 1 erg/G = 1 emu → 10−3 A⋅m2 = 10−3 J/T
M magnetization 1 erg/(G⋅cm3) = 1 emu/cm3 → 103 A/m
M magnetization 1 G → 103/(4π) A/m
σ mass magnetization 1 erg/(G⋅g) = 1 emu/g → 1 A⋅m2/kg
specific magnetization
j magnetic dipole moment 1 erg/G = 1 emu → 4π ⋅ 10−10 Wb⋅m
J magnetic polarization 1 erg/(G⋅cm3) = 1 emu/cm3 → 4π ⋅ 10−4 T
χ, κ susceptibility 1 → 4π
χρ mass susceptibility 1 cm3/g → 4π ⋅ 10−3 m3/kg
μ permeability 1 → 4π ⋅ 10−7 H/m = 4π ⋅ 10−7 Wb/(A⋅m)
μr relative permeability μ → μr
w, W energy density 1 erg/cm3 → 10−1 J/m3
N, D demagnetizing factor 1 → 1/(4π)