Regular Language: Difference between revisions
Jump to navigation
Jump to search
imported>Pat Palmer mNo edit summary |
imported>Howard C. Berkowitz (Linked compllement to disambiguation) |
||
Line 18: | Line 18: | ||
* <math>A \cup B = \{x ~|~ x \in A\ \mathrm{or}\ x \in B\}</math> ([[union]]) | * <math>A \cup B = \{x ~|~ x \in A\ \mathrm{or}\ x \in B\}</math> ([[union]]) | ||
* <math>A \cap B = \{x ~|~ x \in A\ \mathrm{and}\ x \in B\}</math> ([[intersection]]) | * <math>A \cap B = \{x ~|~ x \in A\ \mathrm{and}\ x \in B\}</math> ([[intersection]]) | ||
* <math>\bar{A} = \{x \in \Sigma^* ~|~ x \not\in A\}</math> ([[complement]]) | * <math>\bar{A} = \{x \in \Sigma^* ~|~ x \not\in A\}</math> ([[complement (computer language)]]) | ||
* <math>AB = \{xy ~|~ x \in A\ \mathrm{and}\ y \in B\}</math> ([[concatenation]]) | * <math>AB = \{xy ~|~ x \in A\ \mathrm{and}\ y \in B\}</math> ([[concatenation]]) | ||
* <math>A^* = \{x_1 x_2 \ldots x_n ~|~ n \geq 0\ \mathrm{and}\ x_i \in A,~1 \leq i \leq n\}</math> ([[asterate]]) | * <math>A^* = \{x_1 x_2 \ldots x_n ~|~ n \geq 0\ \mathrm{and}\ x_i \in A,~1 \leq i \leq n\}</math> ([[asterate]]) |
Revision as of 22:28, 22 October 2008
In computing theory, a regular language is one that is accepted by a finite automaton.
Equivalent Characterizations
- is a regular language.
- is accepted by a deterministic finite automaton(DFA).
- is accepted by an alternating finite automaton(AFA).
- is accepted by a non-deterministic finite automaton(NFA).
- is accepted by a generalized non-deterministic finite automaton(GNFA).
- can be described by a regular expression(RE).
Closure Properties
Suppose are regular languages. Then the following languages are also regular.
- (union)
- (intersection)
- (complement (computer language))
- (concatenation)
- (asterate)
- (difference)
- (reversal)
Regular languages are also closed under homomorphic images and preimages. Suppose is a regular language and is a string homomorphism. Then the following languages are regular.