Strong pseudoprime: Difference between revisions
Jump to navigation
Jump to search
imported>Karsten Meyer (New page: A '''strong Pseudoprime''' is an Euler pseudoprime with a special property: If a composite Number <math>\scriptstyle q\ </math> is factorable in <math>\scriptstyle q = d\cdot 2^s</mat...) |
imported>Karsten Meyer m (→Properties) |
||
Line 13: | Line 13: | ||
*Every strong pseudoprime is odd, because every Euler pseudoprime is odd. | *Every strong pseudoprime is odd, because every Euler pseudoprime is odd. | ||
*If a strong pseudoprime <math>\scriptstyle q\ </math> is pseudoprime to a base <math>\scriptstyle a\ </math> in <math>\scriptstyle a^d \equiv 1 \pmod{q}</math>, than <math>\scriptstyle q\ </math> is pseudoprime to a base <math>\scriptstyle a' = q-a\ </math> in <math>\scriptstyle a'^d \equiv -1 \pmod{q}</math> and versa vice. | *If a strong pseudoprime <math>\scriptstyle q\ </math> is pseudoprime to a base <math>\scriptstyle a\ </math> in <math>\scriptstyle a^d \equiv 1 \pmod{q}</math>, than <math>\scriptstyle q\ </math> is pseudoprime to a base <math>\scriptstyle a' = q-a\ </math> in <math>\scriptstyle a'^d \equiv -1 \pmod{q}</math> and versa vice. | ||
*It exist an Intersection between the set of strong pseudoprimes and the set of [[Carmichael number]]s | |||
== Further reading == | == Further reading == |
Revision as of 14:55, 2 February 2008
A strong Pseudoprime is an Euler pseudoprime with a special property:
If a composite Number is factorable in , whereby an odd number is, then is a strong Pseudoprime to a base if:
- or
- if
The first condition is stronger
Properties
- Every strong pseudoprime is also an Euler pseudoprime
- Every strong pseudoprime is odd, because every Euler pseudoprime is odd.
- If a strong pseudoprime is pseudoprime to a base in , than is pseudoprime to a base in and versa vice.
- It exist an Intersection between the set of strong pseudoprimes and the set of Carmichael numbers
Further reading
- Richard E. Crandall and Carl Pomerance. Prime Numbers: A Computational Perspective. Springer-Verlag, 2001, ISBN 0-387-25282-7
- Paolo Ribenboim. The New Book of Prime Number Records. Springer-Verlag, 1996, ISBN 0-387-94457-5