Sensitivity and specificity: Difference between revisions
imported>Robert Badgett (New page: The '''sensitivity and specificity''' of diagnostic tests are defined as "measures for assessing the results of diagnostic and screening tests. Sensitivity represents the proportion of tru...) |
imported>Robert Badgett No edit summary |
||
Line 1: | Line 1: | ||
The '''sensitivity and specificity''' of diagnostic tests are defined as "measures for assessing the results of diagnostic and screening tests. Sensitivity represents the proportion of truly diseased persons in a screened population who are identified as being diseased by the test. It is a measure of the probability of correctly diagnosing a condition. Specificity is the proportion of truly nondiseased persons who are so identified by the screening test. It is a measure of the probability of correctly identifying a nondiseased person. (From Last, Dictionary of Epidemiology, 2d ed)."<ref name="MeSH_SnSp">{{cite web |url=http://www.nlm.nih.gov/cgi/mesh/2007/MB_cgi?term=Sensitivity+and+Specificity |title=Sensitivity and specificity |accessdate=2007-12-09 |author=National Library of Mediicne |authorlink= |coauthors= |date= |format= |work= |publisher= |pages= |language= |archiveurl= |archivedate= |quote=}}</ref> | The '''sensitivity and specificity''' of diagnostic tests are based on [[Bayes Theorem]] and defined as "measures for assessing the results of diagnostic and screening tests. Sensitivity represents the proportion of truly diseased persons in a screened population who are identified as being diseased by the test. It is a measure of the probability of correctly diagnosing a condition. Specificity is the proportion of truly nondiseased persons who are so identified by the screening test. It is a measure of the probability of correctly identifying a nondiseased person. (From Last, Dictionary of Epidemiology, 2d ed)."<ref name="MeSH_SnSp">{{cite web |url=http://www.nlm.nih.gov/cgi/mesh/2007/MB_cgi?term=Sensitivity+and+Specificity |title=Sensitivity and specificity |accessdate=2007-12-09 |author=National Library of Mediicne |authorlink= |coauthors= |date= |format= |work= |publisher= |pages= |language= |archiveurl= |archivedate= |quote=}}</ref> | ||
{| class="wikitable" align="center" | {| class="wikitable" align="center" |
Revision as of 06:05, 9 December 2007
The sensitivity and specificity of diagnostic tests are based on Bayes Theorem and defined as "measures for assessing the results of diagnostic and screening tests. Sensitivity represents the proportion of truly diseased persons in a screened population who are identified as being diseased by the test. It is a measure of the probability of correctly diagnosing a condition. Specificity is the proportion of truly nondiseased persons who are so identified by the screening test. It is a measure of the probability of correctly identifying a nondiseased person. (From Last, Dictionary of Epidemiology, 2d ed)."[1]
Disease | ||||
---|---|---|---|---|
Present | Absent | |||
Test result | Positive | Cell A | Cell B | Total with a positive test |
Negative | Cell C | Cell D | Total with a negative test | |
Total with disease | Total without disease |
Sensitivity and specificity
Predictive value of tests
The predictive values of diagnostic tests are defined as "in screening and diagnostic tests, the probability that a person with a positive test is a true positive (i.e., has the disease), is referred to as the predictive value of a positive test; whereas, the predictive value of a negative test is the probability that the person with a negative test does not have the disease. Predictive value is related to the sensitivity and specificity of the test."[2]
References
- ↑ National Library of Mediicne. Sensitivity and specificity. Retrieved on 2007-12-09.
- ↑ National Library of Mediicne. Predictive value of tests. Retrieved on 2007-12-09.