Fibonacci number: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Wlodzimierz Holsztynski
m (→‎Properties: cosmetic)
imported>Wlodzimierz Holsztynski
Line 61: Line 61:
*<math>\sum_{i=0}^n F_i^2 = F_n \cdot F_{n+1}</math>
*<math>\sum_{i=0}^n F_i^2 = F_n \cdot F_{n+1}</math>


== Direct formula ==
== Direct formula and the [[golden ratio]] ==
We have  
We have  
:<math>F_n\ =\ \frac{1}{\sqrt{5}}\cdot \left(\left(\frac{1+\sqrt{5}}{2}\right)^n - \left(\frac{1-\sqrt{5}}{2}\right)^n\right)</math>
:<math>F_n\ =\ \frac{1}{\sqrt{5}}\cdot \left(\left(\frac{1+\sqrt{5}}{2}\right)^n - \left(\frac{1-\sqrt{5}}{2}\right)^n\right)</math>

Revision as of 20:48, 29 December 2007

This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In mathematics, the Fibonacci numbers form a sequence defined by the following recurrence relation:

The sequence of fibonacci numbers start: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ...

The sequence of Fibonacci numbers was first used to represent the growth of a colony of rabbits, starting with a single pair of rabbits.


Properties

We will apply the following simple observation to Fibonacci numbers:

if three integers   satisfy equality   then


Indeed,

and the rest is an easy induction.


for all integers   such that


Indeed, the equality holds for   and the rest is a routine induction on

Next, since ,  the above equality implies:

which, via Euclid algorithm, leads to:


Let's note the two instant corollaries of the above statement:


  • If   divides then divides
  • If   is a prime number then   is prime. (The converse is false.)


Direct formula and the golden ratio

We have

for every .

Indeed, let    and   .  Let

Then:

  •     and    
  •     hence    
  •     hence    

for every . Thus   for every and the formula is proved.

Furthermore, we have:

It follows that

  is the nearest integer to 

for every . It follows that  ;  thus the value of the golden ratio is

.

Further reading