Fibonacci number: Difference between revisions
Jump to navigation
Jump to search
imported>Wlodzimierz Holsztynski |
imported>Aleksander Stos (→Properties: unfortunately it's false that way :( otherwise, I'd easily claim $100K right now... see http://w2.eff.org/awards/coop.php) |
||
Line 22: | Line 22: | ||
*The quotient of two consecutive fibonacci numbers converges to the [[golden ratio]]: <math>\lim_{n\to\infty}\frac{F(n+1)}{F(n)}=\varphi</math> | *The quotient of two consecutive fibonacci numbers converges to the [[golden ratio]]: <math>\lim_{n\to\infty}\frac{F(n+1)}{F(n)}=\varphi</math> | ||
*If <math>\scriptstyle m > 2\ </math> divides <math>\scriptstyle n\ </math> then <math>\scriptstyle F_m\ </math> divides <math>\scriptstyle F_n\ </math> | *If <math>\scriptstyle m > 2\ </math> divides <math>\scriptstyle n\ </math> then <math>\scriptstyle F_m\ </math> divides <math>\scriptstyle F_n\ </math> | ||
*If <math>\scriptstyle p \ge 5</math> | *If <math>\scriptstyle p \ge 5</math> and <math>\scriptstyle F_p\ </math> is a prime number then <math>p</math> is prime. (The converse is false.) | ||
*<math>\operatorname{gcd}(f_m, f_n) = f_{\operatorname{gcd}(m,n)} </math> | *<math>\operatorname{gcd}(f_m, f_n) = f_{\operatorname{gcd}(m,n)} </math> | ||
*<math>F_0^2 + F_1^2 + F_2^2 + ... + F_n^2 = \sum_{i=0}^n F_i^2 = F_n \cdot F_{n+1}</math> | *<math>F_0^2 + F_1^2 + F_2^2 + ... + F_n^2 = \sum_{i=0}^n F_i^2 = F_n \cdot F_{n+1}</math> |
Revision as of 07:51, 29 December 2007
In mathematics, the Fibonacci numbers form a sequence defined by the following recurrence relation:
The sequence of fibonacci numbers start: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ...
Fibonacci numbers and the rabbits
The sequence of fibonacci numbers was first used, to repesent the growth of a colony of rabbits, starting with one pair of rabbits.
Properties
- The quotient of two consecutive fibonacci numbers converges to the golden ratio:
- If divides then divides
- If and is a prime number then is prime. (The converse is false.)
Direct formula
Let and . Let
Then:
- and
- hence
- hence
for every . Thus for every , i.e.
for every . Furthermore:
It follows that
is the nearest integer to
for every . It follows that ; thus the value of the golden ratio is
- .
Further reading
- John H. Conway und Richard K. Guy, The Book of Numbers, ISBN 0-387-97993-X