Fibonacci number: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Wlodzimierz Holsztynski
imported>Aleksander Stos
(→‎Properties: unfortunately it's false that way :( otherwise, I'd easily claim $100K right now... see http://w2.eff.org/awards/coop.php)
Line 22: Line 22:
*The quotient of two consecutive fibonacci numbers converges to the [[golden ratio]]: <math>\lim_{n\to\infty}\frac{F(n+1)}{F(n)}=\varphi</math>
*The quotient of two consecutive fibonacci numbers converges to the [[golden ratio]]: <math>\lim_{n\to\infty}\frac{F(n+1)}{F(n)}=\varphi</math>
*If <math>\scriptstyle m > 2\ </math> divides <math>\scriptstyle n\ </math> then <math>\scriptstyle F_m\ </math> divides <math>\scriptstyle F_n\ </math>
*If <math>\scriptstyle m > 2\ </math> divides <math>\scriptstyle n\ </math> then <math>\scriptstyle F_m\ </math> divides <math>\scriptstyle F_n\ </math>
*If <math>\scriptstyle p \ge 5</math> is a prime number, then is <math>\scriptstyle F_p\ </math> also a prime number.
*If <math>\scriptstyle p \ge 5</math> and <math>\scriptstyle F_p\ </math> is a prime number then <math>p</math> is prime. (The converse is false.)
*<math>\operatorname{gcd}(f_m, f_n) = f_{\operatorname{gcd}(m,n)} </math>
*<math>\operatorname{gcd}(f_m, f_n) = f_{\operatorname{gcd}(m,n)} </math>
*<math>F_0^2 + F_1^2 + F_2^2 + ... + F_n^2 = \sum_{i=0}^n F_i^2 = F_n \cdot F_{n+1}</math>
*<math>F_0^2 + F_1^2 + F_2^2 + ... + F_n^2 = \sum_{i=0}^n F_i^2 = F_n \cdot F_{n+1}</math>

Revision as of 07:51, 29 December 2007

This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In mathematics, the Fibonacci numbers form a sequence defined by the following recurrence relation:

The sequence of fibonacci numbers start: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ...

Fibonacci numbers and the rabbits

The sequence of fibonacci numbers was first used, to repesent the growth of a colony of rabbits, starting with one pair of rabbits.

Properties

  • The quotient of two consecutive fibonacci numbers converges to the golden ratio:
  • If divides then divides
  • If and is a prime number then is prime. (The converse is false.)

Direct formula

Let    and   .  Let

Then:

  •     and    
  •     hence    
  •     hence    

for every . Thus   for every , i.e.


for every . Furthermore:


It follows that

  is the nearest integer to  

for every . It follows that  ;  thus the value of the golden ratio is

.

Further reading