Lucas sequence: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Karsten Meyer
mNo edit summary
imported>Hendra I. Nurdin
(major English improvements)
Line 1: Line 1:
'''Lucas sequences''' are the particular generalisation of sequences like [[Fibonacci number|Fibonacci numbers]], [[Lucas number|Lucas numbers]], [[Pell number|Pell numbers]] or [[Jacobsthal number|Jacobsthal numbers]]. Every of this sequences has one common factor. They could be generatet over [[Quadratic equation|quadratic Equations]] of the form: <math>x^2-Px+Q=0\ </math>.
'''Lucas sequences''' are a particular generalisation of sequences like the [[Fibonacci number|Fibonacci numbers]], [[Lucas number|Lucas numbers]], [[Pell number|Pell numbers]] or [[Jacobsthal number|Jacobsthal numbers]]. These sequences have one common characteristic: they can be generated over [[quadratic equation|quadratic equations]] of the form: <math>\scriptstyle x^2-Px+Q=0\ </math>.


There exists kinds of Lucas sequences:
There exists two kinds of Lucas sequences:
*Sequence <math>U(P,Q) = (U_n(P,Q))_{n \ge 1}</math> with <math>U_n(P,Q)=\frac{a^n-b^n}{a-b}</math>
*Sequences <math>\scriptstyle U(P,Q) = (U_n(P,Q))_{n \ge 1}</math> with <math>\scriptstyle U_n(P,Q)=\frac{a^n-b^n}{a-b}</math>,
*Sequence <math>V(P,Q) = (V_n(P,Q))_{n \ge 1}</math> with <math>U_n(P,Q)=a^n+b^n\ </math>
*Sequences <math>\scriptstyle V(P,Q) = (V_n(P,Q))_{n \ge 1}</math> with <math>\scriptstyle U_n(P,Q)=a^n+b^n\ </math>,
<math>a\ </math> and <math>b\ </math> are the solutions <math>a = \frac{P + \sqrt{P^2 - 4Q}}{2}</math> and <math>b = \frac{P - \sqrt{P^2 - 4Q}}{2}</math> of the quadratic equation <math>x^2-Px+Q=0\ </math>.
 
where <math>\scriptstyle a\ </math> and <math>b\ </math> are the solutions  
 
:<math>a = \frac{P + \sqrt{P^2 - 4Q}}{2}</math>  
 
and  
 
:<math>b = \frac{P - \sqrt{P^2 - 4Q}}{2}</math>  
 
of the quadratic equation <math>\scriptstyle x^2-Px+Q=0</math>.


==Properties==
==Properties==


*The variables <math>a\ </math> and <math>b\ </math>, and the parameter <math>P\ </math> and <math>Q\ </math> are interdependent. So it is true, that <math>P=a+b\ </math> and <math>Q=a\cdot b.</math>.
*The variables <math>\scriptstyle a\ </math> and <math>\scriptstyle b\ </math>, and the parameter <math>\scriptstyle P\ </math> and <math>\scriptstyle Q\ </math> are interdependent. In particular, <math>\scriptstyle P=a+b\ </math> and <math>\scriptstyle Q=a\cdot b.</math>.
*For every sequence <math>U(P,Q) = (U_n(P,Q))_{n \ge 1}</math> is it true, that <math>U_0 = 0\ </math> and <math>U_1 = 1\ </math>.
*For every sequence <math>\scriptstyle U(P,Q) = (U_n(P,Q))_{n \ge 1}</math> it holds that <math>\scriptstyle U_0 = 0\ </math> and <math>U_1 = 1 </math>.
*For every sequence <math>V(P,Q) = (V_n(P,Q))_{n \ge 1}</math> is it true, that  <math>V_0 = 2\ </math> and <math>V_1 = P\ </math>.
*For every sequence <math>\scriptstyle V(P,Q) = (V_n(P,Q))_{n \ge 1}</math> is holds that  <math>\scriptstyle V_0 = 2\ </math> and <math>V_1 = P </math>.


For every Lucas sequence is true that
For every Lucas sequence the following are true:
*<math>U_{2n} = U_n\cdot V_n\ </math>
*<math>\scriptstyle U_{2n} = U_n\cdot V_n\ </math>
*<math>V_n = U_{n+1} - QU_{n-1}\ </math>
*<math>\scriptstyle V_n = U_{n+1} - QU_{n-1}\ </math>
*<math>V_{2n} = V_n^2 - 2Q^n\ </math>
*<math>\scriptstyle V_{2n} = V_n^2 - 2Q^n\ </math>
*<math>\operatorname{ggT}(U_m,U_n)=U_{\operatorname{ggT}(m,n)}</math>
*<math>\scriptstyle \operatorname{ggT}(U_m,U_n)=U_{\operatorname{ggT}(m,n)}</math>
*<math>m\mid n\implies U_m\mid U_n</math>; für alle  <math>U_m\ne 1</math>
*<math>\scriptstyle m\mid n\implies U_m\mid U_n</math> for all <math>U_m\ne 1</math>


==Fibonacci numbers and Lucas numbers==
==Fibonacci numbers and Lucas numbers==


The both best-known Lucas sequences are the Fibonacci numbers <math>U(1,-1)\ </math> and the Lucas numbers <math>V(1,-1)\ </math> with <math> a = \frac{1+\sqrt{5}}{2}</math> and <math>b = \frac{1-\sqrt{5}}{2}</math>.
The two best known Lucas sequences are the Fibonacci numbers <math>\scriptstyle U(1,-1)\ </math> and the Lucas numbers <math>\scriptstyle V(1,-1)\ </math> with <math>\scriptstyle  a = \frac{1+\sqrt{5}}{2}</math> and <math>\scriptstyle b = \frac{1-\sqrt{5}}{2}</math>.


==Lucas sequences and the Prime numbers==
==Lucas sequences and the prime numbers==


Is the natural number <math>p\ </math> a [[Prime number]], then it is true, that
If the natural number <math>\scriptstyle p\ </math> is a [[prime number]] then it holds that
*<math>p\ </math> divides <math>U_p(P,Q)-\left(\frac Dp\right)</math>
*<math>\scriptstyle p\ </math> divides <math>\scriptstyle U_p(P,Q)-\left(\frac Dp\right)</math>
*<math>p\ </math> divides <math>V_p(P,Q)-P\ </math>
*<math>\scriptstyle p\ </math> divides <math>\scriptstyle V_p(P,Q)-P\ </math>


Fermat's little theorem you can see as a special case of <math>p\ </math> divides <math>(V_n(P,Q) - P)\ </math> because <math>a^p \equiv a \mod p</math> is äquivalent to <math>V_p(a+1,a) \equiv V_1(a+1,a) \mod p</math>
[[Fermat's Little Theorem]] can then be seen as a special case of <math>\scriptstyle p\ </math> divides <math>\scriptstyle (V_n(P,Q) - P)\ </math> because <math>\scriptstyle a^p \equiv a \mod p</math> is equivalent to <math>\scriptstyle V_p(a+1,a) \equiv V_1(a+1,a) \mod p</math>.


The converse (If <math>n\ </math> divides <math>U_n(P,Q)-\left(\frac Dn\right)</math> then is <math>n\ </math> a prime number and if <math>m\ </math> divides <math>V_m(P,Q)-P\ </math> then is <math>m\ </math> a prime number) is false and lead to [[Fibonacci pseudoprime|Fibonacci pseudoprimes]] respectively to [[Lucas pseudoprime|Lucas pseudoprimes]].
The converse pair of statements that if <math>\scriptstyle n\ </math> divides <math>\scriptstyle U_n(P,Q)-\left(\frac Dn\right)</math> then is <math>\scriptstyle n\ </math> a prime number and if <math>m\ </math> divides <math>\scriptstyle V_m(P,Q)-P\ </math> then is <math>m\ </math> a prime number) are individually false and lead to [[Fibonacci pseudoprime|Fibonacci pseudoprimes]] and [[Lucas pseudoprime|Lucas pseudoprimes]], respectively.


== Further reading ==
== Further reading ==
*''The new Book of Primenumber Records'', Paolo Ribenboim, ISBN 0-387-94457-5
*P. Ribenboim, ''The New Book of Prime Number Records'' (3 ed.), Springer, 1996, ISBN 0-387-94457-5.
*''My Numbers, my Friends'', Paolo Ribenboim, ISBN 0-387-98911-0
*P. Ribenboim, ''My Numbers, My Friends'', Springer, 2000, ISBN 0-387-98911-0.


[[Category:Mathematics Workgroup]]
[[Category:Mathematics Workgroup]]
[[Category:CZ Live]]
[[Category:CZ Live]]

Revision as of 01:27, 17 November 2007

Lucas sequences are a particular generalisation of sequences like the Fibonacci numbers, Lucas numbers, Pell numbers or Jacobsthal numbers. These sequences have one common characteristic: they can be generated over quadratic equations of the form: .

There exists two kinds of Lucas sequences:

  • Sequences with ,
  • Sequences with ,

where and are the solutions

and

of the quadratic equation .

Properties

  • The variables and , and the parameter and are interdependent. In particular, and .
  • For every sequence it holds that and .
  • For every sequence is holds that and .

For every Lucas sequence the following are true:

  • for all

Fibonacci numbers and Lucas numbers

The two best known Lucas sequences are the Fibonacci numbers and the Lucas numbers with and .

Lucas sequences and the prime numbers

If the natural number is a prime number then it holds that

  • divides
  • divides

Fermat's Little Theorem can then be seen as a special case of divides because is equivalent to .

The converse pair of statements that if divides then is a prime number and if divides then is a prime number) are individually false and lead to Fibonacci pseudoprimes and Lucas pseudoprimes, respectively.

Further reading