Higgs boson: Difference between revisions
imported>John Stephenson (copyedit; link; particle consistent with Higgs) |
imported>John R. Brews (use templates) |
||
Line 1: | Line 1: | ||
{{subpages}} | {{subpages}} | ||
The '''Higgs boson''' is a massive spin-0 [[elementary particle]] in the [[Standard Model]] of [[particle physics]] that plays a key role in explaining the mass of other elementary particles. The experimental discovery of a particle consistent with the Higgs was announced in a seminar on July 4, 2012.<ref name=Higgs> | The '''Higgs boson''' is a massive spin-0 [[elementary particle]] in the [[Standard Model]] of [[particle physics]] that plays a key role in explaining the mass of other elementary particles. The experimental discovery of a particle consistent with the Higgs was announced in a seminar on July 4, 2012.<ref name=Higgs/><ref name=CERN/> This particle was first proposed by Professor [[Peter Higgs]] of [[University of Edinburgh|Edinburgh University]] in 1964 as a means to explain the origin of the masses of the elementary particles by the introduction of an fundamental scalar field. This gives all the fundamental particles mass via a process of spontaneous symmetry breaking called the ''Higgs Mechanism''. The Higgs boson was popularised as the "God particle" by the [[Nobel Prize]]-winning [[physicist]] [[Leon M. Lederman]] in his 1993 popular science book ''The God Particle: If the Universe Is the Answer, What is the Question?'' co-written with science writer Dick Teresi.<ref name=Lederman/><ref name=Fermilab/> | ||
==The Higgs mechanism== | |||
==The Higgs | |||
The Higgs Mechanism is vital in explaining the masses of the electroweak W and Z bosons. To understand the problem in giving mass to the vector bosons let us first consider the QED sector of the Standard Model Lagrangian. | The Higgs Mechanism is vital in explaining the masses of the electroweak W and Z bosons. To understand the problem in giving mass to the vector bosons let us first consider the QED sector of the Standard Model Lagrangian. | ||
Line 21: | Line 15: | ||
==Search for the Higgs boson== | ==Search for the Higgs boson== | ||
Studies using the Fermilab's Tevatron collider suggest a range for the mass of the Higgs boson between 115-150 GeV (gigaelectronvolts), assuming the correctness of the Standard Model of particle physics. See review of the experiments:<ref> | Studies using the Fermilab's Tevatron collider suggest a range for the mass of the Higgs boson between 115-150 GeV (gigaelectronvolts), assuming the correctness of the Standard Model of particle physics. See review of the experiments:<ref name=Monig/> | ||
The Higgs particle was not made in the Tevatron collider, but by using the high energies of the [[Large Hadron Collider]] in Geneva. The mass was placed at 125.3±0.6 GeV. This discovery was an early goal of this major international project.<ref name=LHC/> | |||
The discovery was a bit anticlimactic, as theory has incorporated the Higgs boson for decades. As said by Stephen Hawking:<ref name=HawkingBBC/><ref name=Hawking/> | |||
::“This is an important result and should earn Peter Higgs the Nobel Prize” the physicist predicted. “But it is a pity in a way, because the great advances in physics have come from experiments that gave results we didn’t expect.” | |||
Further experiments will explore the complete mechanism. | |||
==References== | |||
{{Reflist|refs= | |||
<ref name=CERN> | |||
{{cite web |title=CERN experiments observe particle consistent with long-sought Higgs boson |date=4 July 2012 |publisher=CERN press office |accessdate=2012-07-05 |url=http://press.web.cern.ch/press/PressReleases/Releases2012/PR17.12E.html}} | |||
</ref> | |||
<ref name=Fermilab> | |||
{{cite journal |author=Ivan Semeniuk |date=17 February 2009 |url=http://www.newscientist.com/article/dn16618-fermilab-closing-in-on-the-god-particle.html |title=Fermilab 'closing in' on the God particle |journal=New Scientist}} | |||
</ref> | |||
<ref name=Hawking> | |||
{{cite web |url=http://www.slashgear.com/higgs-boson-costs-stephen-hawking-100-bet-04237061/ |author=Chris Davies |date=Jul 4th, 2012 |publisher=Slash Gear |title= Higgs boson costs Stephen Hawking $100 bet |accessdate=2012-07-05}} | |||
</ref> | |||
<ref name=HawkingBBC> | |||
{{cite web |url=http://www.bbc.co.uk/news/science-environment-18708626 |date=July 4th, 2012 |publisher=BBC |title= Stephen Hawking on Higgs: 'Discovery has lost me $100' |accessdate=2012-07-06}} | {{cite web |url=http://www.bbc.co.uk/news/science-environment-18708626 |date=July 4th, 2012 |publisher=BBC |title= Stephen Hawking on Higgs: 'Discovery has lost me $100' |accessdate=2012-07-06}} | ||
</ref> | |||
< | <ref name=Higgs> | ||
Announced at a CERN seminar in Geneva. See {{cite web |title=Higgs boson discovery brings scientists close to understanding mass |publisher=Washington Post |url=http://www.washingtonpost.com/business/higgs-boson-discovery-brings-scientists-lose-to-understanding-mass/2012/07/05/gJQA23iQPW_story.html |author=Thomas Mulier and Jason Gale |accessdate=2012-07-05 |quote=The data presented yesterday are the latest from the $10.5 billion [[Large Hadron Collider]], a 27-kilometer (17-mile) circumference particle accelerator buried on the border of France and Switzerland. CERN has 10,000 scientists working on the project...}} | |||
</ref> | |||
{{cite | <ref name=Lederman> | ||
{{cite book |author=Leon M. Lederman and R Teresi |year=1993 |url=http://books.google.com/books?id=-v84Bp-LNNIC&printsec=frontcover#v=onepage&q&f=false |title=The God Particle: If the Universe Is the Answer, What is the Question?|publisher= Dell |isbn= 0-385-31211-3}} | |||
</ref> | |||
<ref name=LHC> | |||
{{cite web |title=Welcome to the Large Hadron Collider |url=http://www.lhc.ac.uk/Default.aspx |publisher=Science and Technology Facilities Council |year=2012 |accessdate=2012-07-06}} | |||
</ref> | </ref> | ||
<ref name=Monig> | |||
{{cite journal |author=Klaus Mönig |date=February 12, 2010 |url=http://physics.aps.org/articles/v3/14 |title=Viewpoint: First bounds on the Higgs boson from hadron colliders |journal=Physics |volume=3 |pages=14 |doi=10.1103/Physics.3.14 }} [http://physics.aps.org/pdf/Physics.3.14.pdf Download PDF.] | |||
</ref> | |||
}} | |||
Revision as of 07:23, 6 July 2012
The Higgs boson is a massive spin-0 elementary particle in the Standard Model of particle physics that plays a key role in explaining the mass of other elementary particles. The experimental discovery of a particle consistent with the Higgs was announced in a seminar on July 4, 2012.[1][2] This particle was first proposed by Professor Peter Higgs of Edinburgh University in 1964 as a means to explain the origin of the masses of the elementary particles by the introduction of an fundamental scalar field. This gives all the fundamental particles mass via a process of spontaneous symmetry breaking called the Higgs Mechanism. The Higgs boson was popularised as the "God particle" by the Nobel Prize-winning physicist Leon M. Lederman in his 1993 popular science book The God Particle: If the Universe Is the Answer, What is the Question? co-written with science writer Dick Teresi.[3][4]
The Higgs mechanism
The Higgs Mechanism is vital in explaining the masses of the electroweak W and Z bosons. To understand the problem in giving mass to the vector bosons let us first consider the QED sector of the Standard Model Lagrangian.
Now consider how things will change if we perform a local phase rotation such that:
We would expect the Langrangian to remain invariant under such a rotation since to do otherwise would mean that if I chose a different phase than someone else where we could get different physics results.
Search for the Higgs boson
Studies using the Fermilab's Tevatron collider suggest a range for the mass of the Higgs boson between 115-150 GeV (gigaelectronvolts), assuming the correctness of the Standard Model of particle physics. See review of the experiments:[5]
The Higgs particle was not made in the Tevatron collider, but by using the high energies of the Large Hadron Collider in Geneva. The mass was placed at 125.3±0.6 GeV. This discovery was an early goal of this major international project.[6]
The discovery was a bit anticlimactic, as theory has incorporated the Higgs boson for decades. As said by Stephen Hawking:[7][8]
- “This is an important result and should earn Peter Higgs the Nobel Prize” the physicist predicted. “But it is a pity in a way, because the great advances in physics have come from experiments that gave results we didn’t expect.”
Further experiments will explore the complete mechanism.
References
- ↑ Announced at a CERN seminar in Geneva. See Thomas Mulier and Jason Gale. Higgs boson discovery brings scientists close to understanding mass. Washington Post. Retrieved on 2012-07-05. “The data presented yesterday are the latest from the $10.5 billion Large Hadron Collider, a 27-kilometer (17-mile) circumference particle accelerator buried on the border of France and Switzerland. CERN has 10,000 scientists working on the project...”
- ↑ CERN experiments observe particle consistent with long-sought Higgs boson. CERN press office (4 July 2012). Retrieved on 2012-07-05.
- ↑ Leon M. Lederman and R Teresi (1993). The God Particle: If the Universe Is the Answer, What is the Question?. Dell. ISBN 0-385-31211-3.
- ↑ Ivan Semeniuk (17 February 2009). "Fermilab 'closing in' on the God particle". New Scientist.
- ↑ Klaus Mönig (February 12, 2010). "Viewpoint: First bounds on the Higgs boson from hadron colliders". Physics 3: 14. DOI:10.1103/Physics.3.14. Research Blogging. Download PDF.
- ↑ Welcome to the Large Hadron Collider. Science and Technology Facilities Council (2012). Retrieved on 2012-07-06.
- ↑ Stephen Hawking on Higgs: 'Discovery has lost me $100'. BBC (July 4th, 2012). Retrieved on 2012-07-06.
- ↑ Chris Davies (Jul 4th, 2012). Higgs boson costs Stephen Hawking $100 bet. Slash Gear. Retrieved on 2012-07-05.