Fermat pseudoprime: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Louise Valmoria
(adding subpage template)
imported>Karsten Meyer
No edit summary
Line 1: Line 1:
{{subpages}}
{{subpages}}


A composite number ''n'' is called '''Fermat pseudoprime''' to a natural base ''a'', coprime to n, so that <math>a^{n-1} \equiv 1 \pmod n</math>
A composite number <math>q\ </math> is called '''Fermat pseudoprime''' to a natural base <math>a\ </math>, coprime to <math>q\ </math>, so that <math>a^{q-1} \equiv 1 \pmod q</math>


==Restriction==
==Restriction==


It is sufficient, that the base ''a'' satisfy <math>2 \le a \le n-2</math> because every odd number ''n'' satisfy for <math>a = n-1\ </math> that <math>a^{n-1} \equiv 1 \pmod n</math><ref>Richard E. Crandall and Carl Pomerance: Prime Numbers. A Computational Perspective. Springer Verlag , page 132, Therem 3.4.2. </ref>
It is sufficient, that the base <math>a\ </math> satisfy <math>2 \le a \le q-2</math> because every odd number <math>q\ </math> satisfy for <math>a = q-1\ </math> that <math>a^{q-1} \equiv 1 \pmod q</math><ref>Richard E. Crandall and Carl Pomerance: Prime Numbers. A Computational Perspective. Springer Verlag , page 132, Therem 3.4.2. </ref>


If ''n'' is a Fermat pseudoprime to base ''a'', then ''n'' is a Fermat pseudoprime to base <math>b\cdot n+a</math> for every integer <math>b \ge 0</math>
If <math>q\ </math> is a Fermat pseudoprime to base <math>a\ </math>, then <math>n\ </math> is a Fermat pseudoprime to base <math>b\cdot q+a</math> for every integer <math>b \ge 0</math>
 
== Odd Fermat pseudoprimes ==
 
To every odd Fermat pseudoprime <math>\scriptstyle q\ </math> exist an even number of bases <math>\scriptstyle a\ </math>. Every base <math>\scriptstyle a\ </math> has a cobase <math>\scriptstyle a' = q - a\ </math>
 
Examples
 
:15 is a Fermat pseudoprime to the bases 4 and 15
 
:49 is a Fermat pseudoprime to the bases 18, 19, 30 and 31


==Properties==
==Properties==

Revision as of 04:51, 7 December 2007

This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
Code [?]
 
This editable Main Article is under development and subject to a disclaimer.

A composite number is called Fermat pseudoprime to a natural base , coprime to , so that

Restriction

It is sufficient, that the base satisfy because every odd number satisfy for that [1]

If is a Fermat pseudoprime to base , then is a Fermat pseudoprime to base for every integer

Odd Fermat pseudoprimes

To every odd Fermat pseudoprime exist an even number of bases . Every base has a cobase

Examples

15 is a Fermat pseudoprime to the bases 4 and 15
49 is a Fermat pseudoprime to the bases 18, 19, 30 and 31

Properties

Most of the Pseudoprimes, like Euler pseudoprime, Carmichael number, Fibonacci pseudoprime and Lucas pseudoprime, are Fermat pseudoprimes.

References and notes

  1. Richard E. Crandall and Carl Pomerance: Prime Numbers. A Computational Perspective. Springer Verlag , page 132, Therem 3.4.2.

Further reading