Fermat pseudoprime: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Karsten Meyer
imported>Karsten Meyer
mNo edit summary
Line 4: Line 4:


It is sufficient, that the base ''a'' satisfy <math>2 \le a \le n-2</math> because every odd number ''n'' satisfy for <math>a = n-1\ </math> that <math>a^{n-1} \equiv 1 \pmod n</math><ref>Richard E. Crandall and Carl Pomerance: Prime Numbers. A Computational Perspective. Springer Verlag , page 132, Therem 3.4.2. </ref>
It is sufficient, that the base ''a'' satisfy <math>2 \le a \le n-2</math> because every odd number ''n'' satisfy for <math>a = n-1\ </math> that <math>a^{n-1} \equiv 1 \pmod n</math><ref>Richard E. Crandall and Carl Pomerance: Prime Numbers. A Computational Perspective. Springer Verlag , page 132, Therem 3.4.2. </ref>
If ''n'' is a Fermat pseudoprime to base ''a'', then ''n'' is a Fermat pseudoprime to base <math>b\cdot n+a</math> for every integer <math>b \ge 0</math>
If ''n'' is a Fermat pseudoprime to base ''a'', then ''n'' is a Fermat pseudoprime to base <math>b\cdot n+a</math> for every integer <math>b \ge 0</math>



Revision as of 14:09, 7 November 2007

A composite number n is called Fermat pseudoprime to a natural base a, coprime to n, so that

Restriction

It is sufficient, that the base a satisfy because every odd number n satisfy for that [1]

If n is a Fermat pseudoprime to base a, then n is a Fermat pseudoprime to base for every integer

Properties

Most of the Pseudoprimes, like Euler pseudoprime, Carmichael number, Fibonacci pseudoprime and Lucas pseudoprime, are Fermat pseudoprimes.

References and notes

  1. Richard E. Crandall and Carl Pomerance: Prime Numbers. A Computational Perspective. Springer Verlag , page 132, Therem 3.4.2.

Further reading