Euler pseudoprime: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Karsten Meyer
mNo edit summary
imported>Karsten Meyer
mNo edit summary
Line 6: Line 6:
:<math>\left( a^{\frac{n-1}{2}}\right)^2 = a^{n-1}</math>
:<math>\left( a^{\frac{n-1}{2}}\right)^2 = a^{n-1}</math>
:and
:and
:<math>1^2 = -1^2 = 1\ </math>
:<math>1^2 = \left( -1\right) ^2 = 1\ </math>
*Every Euler Pseudoprime to base ''a'', which satisfy <math>a^{(n-1)/2}\equiv\left(\frac an\right)\pmod n</math> is an [[Euler-Jacobi pseudoprime]].
*Every Euler Pseudoprime to base ''a'', which satisfy <math>a^{(n-1)/2}\equiv\left(\frac an\right)\pmod n</math> is an [[Euler-Jacobi pseudoprime]].
*[[Carmichael number|Carmichael numbers]] and [[Strong pseudoprime|Strong pseudoprimes]] are Euler pseudoprimes too.
*[[Carmichael number|Carmichael numbers]] and [[Strong pseudoprime|Strong pseudoprimes]] are Euler pseudoprimes too.

Revision as of 15:39, 7 November 2007

A composite number n is called an Euler pseudoprime to a natural base a, if

Properties

and

Further reading