Euler pseudoprime: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Karsten Meyer
mNo edit summary
imported>Louise Valmoria
m (adding subpage template)
Line 1: Line 1:
{{subpages}}
A composite number ''n'' is called an '''Euler pseudoprime''' to a natural base ''a'', if <math>\scriptstyle a^{\frac {n-1}{2}} \equiv 1 \pmod n</math> or <math>\scriptstyle a^{\frac {n-1}{2}} \equiv \left( -1\right) \pmod n</math>
A composite number ''n'' is called an '''Euler pseudoprime''' to a natural base ''a'', if <math>\scriptstyle a^{\frac {n-1}{2}} \equiv 1 \pmod n</math> or <math>\scriptstyle a^{\frac {n-1}{2}} \equiv \left( -1\right) \pmod n</math>



Revision as of 11:44, 6 December 2007

This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
Code [?]
 
This editable Main Article is under development and subject to a disclaimer.

A composite number n is called an Euler pseudoprime to a natural base a, if or

Properties

and

Absolute Euler pseudoprime

An absolute Euler pseudoprime is a composite number c, that satisfies the conrgruence or for every base a that is coprime to c. Every absolute Euler pseudoprime is also a Carmichael number.

Further reading