Entropy of a probability distribution: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Ragnar Schroder
(Initial stub)
 
imported>Ragnar Schroder
(Small edit in header)
Line 1: Line 1:
The '''entropy''' of a [[probability distribution]] is a number that describes the degree of uncertainty the distribution represents.  
The '''entropy''' of a [[probability distribution]] is a number that describes the degree of uncertainty or disorder the distribution represents.  


==Examples==
==Examples==

Revision as of 10:00, 27 June 2007

The entropy of a probability distribution is a number that describes the degree of uncertainty or disorder the distribution represents.

Examples

Assume we have a set of two mutually exclusive propositions (or equivalently, a random experiment with two possible outcomes). Assume all two possiblities are equally likely.

Then our advance uncertainty about the eventual outcome is rather small - we know in advance it will be one of exactly two known alternatives.

Assume now we have a set of a million alternatives - all of them equally likely - rather than two.

It seems clear that our uncertainty now about the eventual outcome will be much bigger.

Formal definitions

  1. Given a discrete probability distribution function f, the entropy H of the distribution is given by
  2. Given a continuous probability distribution function f, the entropy H of the distribution is given by


See also

References

External links