Sturm-Liouville theory/Bibliography: Difference between revisions
Jump to navigation
Jump to search
imported>Dan Nessett (New page: {{subpages}} * P. Hartman, ''Ordinary Differential Equations'', SIAM, Philadelphia, 2002 (2nd edition). ISBN 978-0-898715-10-1 * A. D. Polyanin and V. F. Zaitsev, ''Handbook of Exact Solut...) |
imported>Dan Nessett (Added proof reference to main bibliography) |
||
Line 1: | Line 1: | ||
{{subpages}} | {{subpages}} | ||
* R. V. Churchill, "Fourier Series and Boundary Value Problems", pp. 70-72, (1963) McGraw-Hill, ISBN 0-07-010841-2. | |||
* P. Hartman, ''Ordinary Differential Equations'', SIAM, Philadelphia, 2002 (2nd edition). ISBN 978-0-898715-10-1 | * P. Hartman, ''Ordinary Differential Equations'', SIAM, Philadelphia, 2002 (2nd edition). ISBN 978-0-898715-10-1 | ||
* A. D. Polyanin and V. F. Zaitsev, ''Handbook of Exact Solutions for Ordinary Differential Equations'', Chapman & Hall/CRC Press, Boca Raton, 2003 (2nd edition). ISBN 1-58488-297-2 | * A. D. Polyanin and V. F. Zaitsev, ''Handbook of Exact Solutions for Ordinary Differential Equations'', Chapman & Hall/CRC Press, Boca Raton, 2003 (2nd edition). ISBN 1-58488-297-2 |
Latest revision as of 15:48, 26 August 2009
- Please sort and annotate in a user-friendly manner. For formatting, consider using automated reference wikification.
- R. V. Churchill, "Fourier Series and Boundary Value Problems", pp. 70-72, (1963) McGraw-Hill, ISBN 0-07-010841-2.
- P. Hartman, Ordinary Differential Equations, SIAM, Philadelphia, 2002 (2nd edition). ISBN 978-0-898715-10-1
- A. D. Polyanin and V. F. Zaitsev, Handbook of Exact Solutions for Ordinary Differential Equations, Chapman & Hall/CRC Press, Boca Raton, 2003 (2nd edition). ISBN 1-58488-297-2
- G. Teschl, Ordinary Differential Equations and Dynamical Systems, http://www.mat.univie.ac.at/~gerald/ftp/book-ode/ (Chapter 5)
- G. Teschl, Mathematical Methods in Quantum Mechanics and Applications to Schrödinger Operators, http://www.mat.univie.ac.at/~gerald/ftp/book-schroe/ (see Chapter 9 for singular S-L operators and connections with quantum mechanics)
- A. Zettl, Sturm–Liouville Theory, American Mathematical Society, 2005. ISBN 0-8218-3905-5.