Spherical harmonics/Addendum: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Paul Wormer
(New page: {{subpages}} ==First few spherical harmonics== The following functions are normalized to unity and have the Condon & Shortley phase. ---- <math> \begin{align} Y_{0}^{0}(\theta,\varphi)&=\...)
 
imported>Meg Taylor
(subpages)
 
(2 intermediate revisions by one other user not shown)
Line 1: Line 1:
{{subpages}}
<noinclude>{{Subpages}}</noinclude>
==First few spherical harmonics==
The following functions are normalized to unity and have the Condon & Shortley phase.
----
 
<math>
\begin{align}
Y_{0}^{0}(\theta,\varphi)&=\sqrt{1\over 4\pi}\\
& \\
Y_{1}^{0}(\theta,\varphi)&=\sqrt{3\over 4\pi}\, \cos\theta = \sqrt{3\over 4\pi}\, \frac{z}{r} \\
Y_{1}^{\pm1 }(\theta,\varphi)&=\mp \sqrt{3\over 4\pi}\sqrt{\frac{1}{2}} \, \sin\theta \, e^{\pm i\varphi} = \mp \sqrt{3\over 4\pi}\sqrt{\frac{1}{2}} \,\frac{x\pm iy}{r} \\
& \\
Y_{2}^{0}(\theta,\varphi)&=\sqrt{5\over 4\pi}\, \frac{1}{2}(3\cos^{2}\theta-1)=\sqrt{5\over 4\pi}\, \frac{1}{2}\frac{3z^2-r^2}{r^2}\\
Y_{2}^{\pm1}(\theta,\varphi)&=\mp\sqrt{5\over 4\pi}\sqrt{\frac{3}{2}}\, \sin\theta\,\cos\theta\, e^{\pm i\varphi}=\mp\sqrt{5\over 4\pi}\sqrt{\frac{3}{2}}\, \frac{z(x\pm iy)}{r^2}\\
Y_{2}^{\pm2}(\theta,\varphi)&=\sqrt{5\over 4\pi}\,\sqrt{\frac{3}{8}} \sin^{2}\theta \, e^{\pm2i\varphi} = \sqrt{5\over 4\pi}\,\sqrt{\frac{3}{8}} \frac{(x\pm iy)^2}{r^2} \\
& \\
Y_{3}^{0}(\theta,\varphi)&=\sqrt{\frac{7}{4\pi}}\,\frac{1}{2}\, (5\cos^{3}\theta-3\cos\theta)= \sqrt{\frac{7}{4\pi}}\,\frac{1}{2}\, \frac{5z^3 -3zr^2}{r^3} \\
Y_{3}^{\pm1}(\theta,\varphi)&=\mp\sqrt{\frac{7}{4\pi}}\,\sqrt{\frac{3}{16}}\, \sin\theta(5\cos^{2}\theta-1)e^{\pm i\varphi}= \mp\sqrt{\frac{7}{4\pi}}\,\sqrt{\frac{3}{16}}\,\frac{(x\pm i y)(5z^2-r^2)}{r^3} \\
Y_{3}^{\pm2}(\theta,\varphi)&=\sqrt{\frac{7}{4\pi}}\,\sqrt{\frac{15}{8}}\, \sin^2\theta\cos\theta e^{\pm 2i\varphi}= \sqrt{\frac{7}{4\pi}}\,\sqrt{\frac{15}{8}}\,\frac{z(x\pm i y)^2}{r^3} \\
Y_{3}^{\pm3}(\theta,\varphi)&=\mp\sqrt{\frac{7}{4\pi}}\,\sqrt{\frac{5}{16}}\, \sin^3\theta e^{\pm 3i\varphi}= \mp\sqrt{\frac{7}{4\pi}}\,\sqrt{\frac{5}{16}}\,\frac{(x\pm i y)^3}{r^3} \\
&\\
Y_{4}^{0}(\theta,\varphi)&=\sqrt{\frac{9}{4\pi}}\,\frac{1}{8}\, (35\cos^{4}\theta-30\cos^2\theta+3)= \sqrt{\frac{9}{4\pi}}\,\frac{1}{8}\, \frac{35z^4 -30z^2r^2+3r^4}{r^4} \\
Y_{4}^{\pm1}(\theta,\varphi)&=\mp\sqrt{\frac{9}{4\pi}}\,\sqrt{\frac{5}{16}}\, \sin\theta(7\cos^3\theta-3\cos\theta) e^{\pm i\varphi}= \mp\sqrt{\frac{9}{4\pi}}\,\sqrt{\frac{5}{16}}\,\frac{(x\pm i y)(7z^3-3zr^2)}{r^4} \\
Y_{4}^{\pm2}(\theta,\varphi)&=\sqrt{\frac{9}{4\pi}}\,\sqrt{\frac{5}{32}}\, \sin^2\theta(7\cos^2\theta-1) e^{\pm 2i\varphi}= \sqrt{\frac{9}{4\pi}}\,\sqrt{\frac{5}{32}}\,\frac{(x\pm i y)^2(7z^2-r^2)}{r^4} \\
Y_{4}^{\pm3}(\theta,\varphi)&=\mp\sqrt{\frac{9}{4\pi}}\,\sqrt{\frac{35}{16}}\, \sin^3\theta\cos\theta e^{\pm 3i\varphi}= \mp\sqrt{\frac{9}{4\pi}}\,\sqrt{\frac{35}{16}}\,\frac{z(x\pm i y)^3}{r^4} \\
Y_{4}^{\pm4}(\theta,\varphi)&=\sqrt{\frac{9}{4\pi}}\,\sqrt{\frac{35}{128}}\, \sin^4 e^{\pm 4i\varphi}= \sqrt{\frac{9}{4\pi}}\,\sqrt{\frac{35}{128}}\,\frac{(x\pm i y)^4}{r^4} \\
 
\end{align}
</math>

Latest revision as of 20:59, 25 October 2009

This article is developed but not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
Catalogs [?]
Addendum [?]
 
This addendum is a continuation of the article Spherical harmonics.