Arithmetic function: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Richard Pinch
(subpages)
mNo edit summary
 
(6 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{subpages}}
{{subpages}}
In [[number theory]], an '''arithmetic function''' is a function defined on the set of [[postive integers]], usually with integer, [[real number|real]] or [[complex number|complex]] values.   
In [[number theory]], an '''arithmetic function''' is a function defined on the set of [[positive integer]]s, usually with [[integer]], [[real number|real]] or [[complex number|complex]] values.   
 


==Classes of arithmetic function==
==Classes of arithmetic function==
Arithmetic functions which have some connexion with the additive or multiplicative structure of the integers are of particular interest in number theory. We define a function ''a''(''n'') on positive integers to be
Arithmetic functions which have some connexion with the additive or multiplicative structure of the integers are of particular interest in number theory.
 
===Multiplicative functions===
We define a function ''a''(''n'') on positive integers to be
* '''Totally multiplicative''' if <math>a(mn) = a(m) a(n)</math> for all ''m'' and ''n''.
* '''Totally multiplicative''' if <math>a(mn) = a(m) a(n)</math> for all ''m'' and ''n''.
* '''Multiplicative''' if <math>a(mn) = a(m) a(n)</math> whenever ''m'' and ''n'' are [[coprime]].
* '''Multiplicative''' if <math>a(mn) = a(m) a(n)</math> whenever ''m'' and ''n'' are [[coprime]].
The ''[[Dirichlet convolution]]'' of two arithmetic function ''a''(''n'') and ''b''(''n'') is defined as
:<math>a \star b (n) = \sum_{d \mid n} a(d) b(n/d) .\,</math>
If ''a'' and ''b'' are multiplicative, so is their convolution.


==Examples==
==Examples==
* Carmichael's [[lambda function]]
* A [[Dirichlet character]]
* [[Euler]]'s [[totient function]]
* [[Euler]]'s [[totient function]]
* [[Jordan's totient function]]
* [[Jordan's totient function]]
 
* [[Möbius function]][[Category:Suggestion Bot Tag]]
==See also==
* [[Formal Dirichlet series]]
* [[Average order of an arithmetic function]]
* [[Normal order of an arithmetic function]]

Latest revision as of 16:00, 12 July 2024

This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In number theory, an arithmetic function is a function defined on the set of positive integers, usually with integer, real or complex values.

Classes of arithmetic function

Arithmetic functions which have some connexion with the additive or multiplicative structure of the integers are of particular interest in number theory.

Multiplicative functions

We define a function a(n) on positive integers to be

  • Totally multiplicative if for all m and n.
  • Multiplicative if whenever m and n are coprime.

The Dirichlet convolution of two arithmetic function a(n) and b(n) is defined as

If a and b are multiplicative, so is their convolution.

Examples