Tetration/Bibliography: Difference between revisions
Jump to navigation
Jump to search
imported>Dmitrii Kouznetsov (draft) |
Pat Palmer (talk | contribs) mNo edit summary |
||
(5 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
{{subpages}} | {{subpages}} | ||
Etymology of tetration | |||
<ref name="good">{{cite journal | <ref name="good">{{cite journal | ||
|author= [[Reuben Louis Goodstein|R.L.Goodstein]] | |author= [[Reuben Louis Goodstein|R.L.Goodstein]] | ||
Line 15: | Line 14: | ||
Tetration for base <math>b\!=\!\mathrm{e}</math> | Tetration for base <math>b\!=\!\mathrm{e}</math> | ||
<ref name="k">D.Kouznetsov. Solutions of <math>F(z+1)=\exp(F(z))</math> in the complex <math>z</math>plane. [[Mathematics of Computation]], | <ref name="k"> | ||
{{cite journal | |||
|author=D.Kouznetsov. | |||
|title=Solutions of <math>F(z\!+\!1)=\exp(F(z))</math> in the complex <math>z</math>plane. | |||
|journal=[[Mathematics of Computation]], | |||
|year=2009 | |||
|volume=78 | |||
|pages=1647-1670 | |||
|url= http://www.ams.org/mcom/2009-78-267/S0025-5718-09-02188-7/home.html | |||
|preprint: http://www.ils.uec.ac.jp/~dima/PAPERS/analuxp99.pdf | |||
|doi=10.1090/S0025-5718-09-02188-7 | |||
}}preprint: http://www.ils.uec.ac.jp/~dima/PAPERS/analuxp99.pdf | |||
</ref><ref name="vladie"> | |||
{{cite journal | |||
|author=D.Kouznetsov. | |||
|title=Superexponential as special function. | |||
|journal=[[Vladikavkaz Mathematical Journal]] | |||
|year=2009 | |||
|url=http://www.ils.uec.ac.jp/~dima/PAPERS/2009vladie.pdf | |||
| volume=12 | |||
| issue=2 | |||
|pages=31-45 | |||
}} | |||
</ref> | |||
Uniqueness of the tetration and arctetration at base <math>b\!>\! \exp(1/\mathrm e)</math> | |||
<ref name="uni"> | |||
H.Trappmann, D.Kouznetsov. Uniqueness of Analytic Abel Functions in Absence of a Real Fixed Point. [[Aequationes Mathematicae]], v.81, p.65-76 (2011) | |||
http://www.springerlink.com/content/u7327836m2850246/ | |||
http://tori.ils.uec.ac.jp/PAPERS/2011uniabel.pdf | |||
</ref> | |||
Superexponentials (and the tetration) to base <math>b\!=\! \exp(1/\mathrm e)</math> | |||
<ref name="e1e"> | |||
H.Trappmann, D.Kouznetsov. Computation of the Two Regular Super-Exponentials to base exp(1/e). [[Mathematics of computation]], in preparation, 2011. | |||
http://tori.ils.uec.ac.jp/PAPERS/2011e1e.pdf | |||
</ref> | |||
Superexponentials (and the tetration) for the case <math>1\!<\!b\!<\! \exp(1/\mathrm e)</math>, and, in particular, for | |||
<math>b\!=\!\sqrt{2}</math> | |||
<ref name="q2"> | |||
D.Kouznetsov, H.Trappmann. Portrait of the four regular super-exponentials to base sqrt(2). [[Mathematics of Computation]], 2010, v.79, p.1727-1756. | |||
http://www.ams.org/journals/mcom/2010-79-271/S0025-5718-10-02342-2/home.html | |||
http://tori.ils.uec.ac.jp/PAPERS/2010sqrt2.pdf | |||
</ref> | |||
<!-- | |||
Linear and piece-vice approximation of tetration. | Linear and piece-vice approximation of tetration. | ||
<ref name="uxp"> | <ref name="uxp"> | ||
Line 25: | Line 69: | ||
Tetration for <math>b\!=\!\mathrm{e}</math> | Tetration for <math>b\!=\!\mathrm{e}</math> | ||
<ref name="k">D.Kouznetsov. Solutions of <math>F(z+1)=\exp(F(z))</math> in the complex <math>z</math>plane. [[Mathematics of Computation]], 2008, in press; preprint: http://www.ils.uec.ac.jp/~dima/PAPERS/analuxp99.pdf</ref> | <ref name="k">D.Kouznetsov. Solutions of <math>F(z+1)=\exp(F(z))</math> in the complex <math>z</math>plane. [[Mathematics of Computation]], 2008, in press; preprint: http://www.ils.uec.ac.jp/~dima/PAPERS/analuxp99.pdf</ref> | ||
!--> | |||
Other solutions of equation <math>F(z+1)=\exp(F(z))</math>: | |||
<ref name="kneser"> | <ref name="kneser"> | ||
H.Kneser. “Reelle analytische L¨osungen der Gleichung | H.Kneser. “Reelle analytische L¨osungen der Gleichung <math> \varphi(\varphi(x)) = e^x</math> und verwandter Funktionalgleichungen”. | ||
Journal | [[Journal fur die reine und angewandte Mathematik]], 187 (1950), 56-67. | ||
</ref> | </ref> | ||
Application of tetration <ref> | Application of tetration <ref> | ||
P.Walker. Infinitely differentiable generalized logarithmic and exponential functions. Mathematics | P.Walker. Infinitely differentiable generalized logarithmic and exponential functions. [[Mathematics of computation]], 196 (1991), 723-733. | ||
of computation, 196 (1991), 723-733. | |||
</ref> | </ref> | ||
<ref name="uxp"> | <ref name="uxp"> | ||
M.H.Hooshmand. ”Ultra power and ultra exponential functions”. Integral Transforms and | M.H.Hooshmand. ”Ultra power and ultra exponential functions”. [[Integral Transforms and Special Functions]] <b>17</b> (8), 549-558 (2006) | ||
Special Functions 17 (8), 549-558 (2006) | |||
</ref> | </ref> | ||
<ref name="a"> W.Ackermann. ”Zum Hilbertschen Aufbau der reellen Zahlen”. Mathematische Annalen | <ref name="a"> W.Ackermann. ”Zum Hilbertschen Aufbau der reellen Zahlen”. [[Mathematische Annalen]] | ||
99(1928), 118-133</ref> | 99(1928), 118-133</ref> | ||
<ref name="k2" | <ref name="k2"/>. | ||
Ackermann Function | Ackermann Function | ||
<ref name="a"> W.Ackermann. ”Zum Hilbertschen Aufbau der reellen Zahlen”. Mathematische Annalen | <ref name="a"> W.Ackermann. ”Zum Hilbertschen Aufbau der reellen Zahlen”. [[Mathematische Annalen]] | ||
99(1928), 118-133</ref> | 99(1928), 118-133</ref> | ||
<ref name="k2" | <ref name="k2"/>. | ||
About iterations: | |||
<ref>A.Knoebel | <ref>{{cite journal | ||
|author=A.Knoebel | |||
|title=Exponentials Reiterated | |||
|journal=[[Amer. Math. Monthly]] | |||
|volume=88 | |||
|year=1981 | |||
|pages=235-252 | |||
}}</ref> | |||
Wiki-resources related to tetration:<br> | |||
http://www.proofwiki.org/wiki/Definition:Tetration<br> | |||
http://tori.ils.uec.ac.jp/TORI/index.php/Tetration<br> | |||
==References== | |||
{{reflist}} |
Latest revision as of 10:10, 16 September 2024
- Please sort and annotate in a user-friendly manner. For formatting, consider using automated reference wikification.
Etymology of tetration [1].
Tetration for base [2].
Uniqueness of the tetration and arctetration at base [5]
Superexponentials (and the tetration) to base [6]
Superexponentials (and the tetration) for the case , and, in particular, for [7]
Other solutions of equation :
[8]
Application of tetration [9] [10] [11] [2].
About iterations: [12]
Wiki-resources related to tetration:
http://www.proofwiki.org/wiki/Definition:Tetration
http://tori.ils.uec.ac.jp/TORI/index.php/Tetration
References
- ↑ R.L.Goodstein (1947). "Transfinite ordinals in recursive number theory". Journal of Symbolic Logic 12.
- ↑ 2.0 2.1 2.2 D.Kouznetsov. Ackermann functions of complex argument. Preprint of the Institute for Laser Science, UEC, 2008. http://www.ils.uec.ac.jp/~dima/PAPERS/2008ackermann.pdf
- ↑ D.Kouznetsov. (2009). "Solutions of in the complex plane.". Mathematics of Computation, 78: 1647-1670. DOI:10.1090/S0025-5718-09-02188-7. Research Blogging. preprint: http://www.ils.uec.ac.jp/~dima/PAPERS/analuxp99.pdf
- ↑ D.Kouznetsov. (2009). "Superexponential as special function.". Vladikavkaz Mathematical Journal 12 (2): 31-45.
- ↑ H.Trappmann, D.Kouznetsov. Uniqueness of Analytic Abel Functions in Absence of a Real Fixed Point. Aequationes Mathematicae, v.81, p.65-76 (2011) http://www.springerlink.com/content/u7327836m2850246/ http://tori.ils.uec.ac.jp/PAPERS/2011uniabel.pdf
- ↑ H.Trappmann, D.Kouznetsov. Computation of the Two Regular Super-Exponentials to base exp(1/e). Mathematics of computation, in preparation, 2011. http://tori.ils.uec.ac.jp/PAPERS/2011e1e.pdf
- ↑ D.Kouznetsov, H.Trappmann. Portrait of the four regular super-exponentials to base sqrt(2). Mathematics of Computation, 2010, v.79, p.1727-1756. http://www.ams.org/journals/mcom/2010-79-271/S0025-5718-10-02342-2/home.html http://tori.ils.uec.ac.jp/PAPERS/2010sqrt2.pdf
- ↑ H.Kneser. “Reelle analytische L¨osungen der Gleichung und verwandter Funktionalgleichungen”. Journal fur die reine und angewandte Mathematik, 187 (1950), 56-67.
- ↑ P.Walker. Infinitely differentiable generalized logarithmic and exponential functions. Mathematics of computation, 196 (1991), 723-733.
- ↑ M.H.Hooshmand. ”Ultra power and ultra exponential functions”. Integral Transforms and Special Functions 17 (8), 549-558 (2006)
- ↑ 11.0 11.1 W.Ackermann. ”Zum Hilbertschen Aufbau der reellen Zahlen”. Mathematische Annalen 99(1928), 118-133
- ↑ A.Knoebel (1981). "Exponentials Reiterated". Amer. Math. Monthly 88: 235-252.