Krull dimension: Difference between revisions
Jump to navigation
Jump to search
imported>Richard Pinch (new entry, just a stub) |
mNo edit summary |
||
Line 4: | Line 4: | ||
==References== | ==References== | ||
* [[Irving Kaplansky]], ''Commutative rings (revised ed.)'', [[University of Chicago Press]], 1974, ISBN 0-226-42454-5. Page 32. | * [[Irving Kaplansky]], ''Commutative rings (revised ed.)'', [[University of Chicago Press]], 1974, ISBN 0-226-42454-5. Page 32. | ||
* [[A.I. Kostrikin]] and [[Igor Shafarevich|I.R. Shafarevich]] (edd), ''Algebra II'', Encyclopaedia of Mathematical Sciences '''18''', [[Springer-Verlag]], 1991, ISBN 3-540-18177-6. Sect.4.7. | * [[A.I. Kostrikin]] and [[Igor Shafarevich|I.R. Shafarevich]] (edd), ''Algebra II'', Encyclopaedia of Mathematical Sciences '''18''', [[Springer-Verlag]], 1991, ISBN 3-540-18177-6. Sect.4.7.[[Category:Suggestion Bot Tag]] |
Latest revision as of 06:00, 9 September 2024
In algebra, the Krull dimension of a ring is one less than the length of a maximal ascending chain of prime ideals.
References
- Irving Kaplansky, Commutative rings (revised ed.), University of Chicago Press, 1974, ISBN 0-226-42454-5. Page 32.
- A.I. Kostrikin and I.R. Shafarevich (edd), Algebra II, Encyclopaedia of Mathematical Sciences 18, Springer-Verlag, 1991, ISBN 3-540-18177-6. Sect.4.7.