Strong pseudoprime: Difference between revisions
Jump to navigation
Jump to search
imported>Warren Schudy m (zapped categories) |
mNo edit summary |
||
(One intermediate revision by one other user not shown) | |||
Line 19: | Line 19: | ||
== Further reading == | == Further reading == | ||
* [[Richard E. Crandall]] and [[Carl Pomerance]]. Prime Numbers: A Computational Perspective. Springer-Verlag, 2001, ISBN 0-387-25282-7 | * [[Richard E. Crandall]] and [[Carl Pomerance]]. Prime Numbers: A Computational Perspective. Springer-Verlag, 2001, ISBN 0-387-25282-7 | ||
* [[ | * [[Paulo Ribenboim]]. The New Book of Prime Number Records. Springer-Verlag, 1996, ISBN 0-387-94457-5 | ||
== Links == | == Links == | ||
* [http://de.wikibooks.org/wiki/Pseudoprimzahlen:_Tabelle_starke_Pseudoprimzahlen_(49_-_9999) Table of strong pseudoprimes between 49 and 1393] | * [http://de.wikibooks.org/wiki/Pseudoprimzahlen:_Tabelle_starke_Pseudoprimzahlen_(49_-_9999) Table of strong pseudoprimes between 49 and 1393][[Category:Suggestion Bot Tag]] |
Latest revision as of 16:01, 22 October 2024
A strong pseudoprime is an Euler pseudoprime with a special property:
A composite number (where is odd) is a strong pseudoprime to a base if:
- or
- if
The first condition is stronger.
Properties
- Every strong pseudoprime is also an Euler pseudoprime.
- Every strong pseudoprime is odd, because every Euler pseudoprime is odd.
- If a strong pseudoprime is pseudoprime to a base in , than is pseudoprime to a base in and vice versa.
- There exist Carmichael numbers that are also strong pseudoprimes.
Further reading
- Richard E. Crandall and Carl Pomerance. Prime Numbers: A Computational Perspective. Springer-Verlag, 2001, ISBN 0-387-25282-7
- Paulo Ribenboim. The New Book of Prime Number Records. Springer-Verlag, 1996, ISBN 0-387-94457-5