Strong pseudoprime: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Karsten Meyer
mNo edit summary
 
(5 intermediate revisions by 3 users not shown)
Line 1: Line 1:
A '''strong Pseudoprime''' is an [[Euler pseudoprime]] with a special property:
{{subpages}}


If a composite Number <math>\scriptstyle q\ </math> is factorable in <math>\scriptstyle q = d\cdot 2^s</math>, whereby <math>\scriptstyle d\ </math> an odd number is, then is <math>\scriptstyle q\ </math> a strong Pseudoprime to a base <math>\scriptstyle a\ </math> if:
A '''strong pseudoprime''' is an [[Euler pseudoprime]] with a special property:
 
A composite number <math>\scriptstyle q = d\cdot 2^s + 1</math> (where <math>\scriptstyle d\ </math> is odd) is a strong pseudoprime to a base <math>\scriptstyle a\ </math> if:


*<math>a^d \equiv 1 \pmod{q}</math>
*<math>a^d \equiv 1 \pmod{q}</math>
Line 7: Line 9:
*<math>a^{d\cdot 2^r} \equiv -1 \pmod{q}</math> if <math>0\le r < s-1</math>
*<math>a^{d\cdot 2^r} \equiv -1 \pmod{q}</math> if <math>0\le r < s-1</math>


The first condition is stronger
The first condition is stronger.


== Properties ==
== Properties ==
*Every strong pseudoprime is also an Euler pseudoprime
*Every strong pseudoprime is also an Euler pseudoprime.
*Every strong pseudoprime is odd, because every Euler pseudoprime is odd.
*Every strong pseudoprime is odd, because every Euler pseudoprime is odd.
*If a strong pseudoprime <math>\scriptstyle q\ </math> is pseudoprime to a base <math>\scriptstyle a\ </math> in <math>\scriptstyle a^d \equiv 1 \pmod{q}</math>, than <math>\scriptstyle q\ </math> is pseudoprime to a base <math>\scriptstyle a' = q-a\ </math> in <math>\scriptstyle a'^d \equiv -1 \pmod{q}</math> and versa vice.
*If a strong pseudoprime <math>\scriptstyle q\ </math> is pseudoprime to a base <math>\scriptstyle a\ </math> in <math>\scriptstyle a^d \equiv 1 \pmod{q}</math>, than <math>\scriptstyle q\ </math> is pseudoprime to a base <math>\scriptstyle a' = q-a\ </math> in <math>\scriptstyle a'^d \equiv -1 \pmod{q}</math> and vice versa.
*It exist an Intersection between the set of strong pseudoprimes and the set of [[Carmichael number]]s
*There exist [[Carmichael number]]s that are also strong pseudoprimes.


== Further reading ==
== Further reading ==
* [[Richard E. Crandall]] and [[Carl Pomerance]]. Prime Numbers: A Computational Perspective. Springer-Verlag, 2001, ISBN 0-387-25282-7  
* [[Richard E. Crandall]] and [[Carl Pomerance]]. Prime Numbers: A Computational Perspective. Springer-Verlag, 2001, ISBN 0-387-25282-7  
* [[Paolo Ribenboim]]. The New Book of Prime Number Records. Springer-Verlag, 1996, ISBN 0-387-94457-5
* [[Paulo Ribenboim]]. The New Book of Prime Number Records. Springer-Verlag, 1996, ISBN 0-387-94457-5


== Links ==
== Links ==
* [http://de.wikibooks.org/wiki/Pseudoprimzahlen:_Tabelle_starke_Pseudoprimzahlen_(49_-_9999) Table of strong pseudoprimes between 49 and 1393]
* [http://de.wikibooks.org/wiki/Pseudoprimzahlen:_Tabelle_starke_Pseudoprimzahlen_(49_-_9999) Table of strong pseudoprimes between 49 and 1393][[Category:Suggestion Bot Tag]]
 
[[Category:Mathematics Workgroup]]
[[Category:Stub Articles]]
[[Category:CZ Live]]

Latest revision as of 16:01, 22 October 2024

This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

A strong pseudoprime is an Euler pseudoprime with a special property:

A composite number (where is odd) is a strong pseudoprime to a base if:

or
  • if

The first condition is stronger.

Properties

  • Every strong pseudoprime is also an Euler pseudoprime.
  • Every strong pseudoprime is odd, because every Euler pseudoprime is odd.
  • If a strong pseudoprime is pseudoprime to a base in , than is pseudoprime to a base in and vice versa.
  • There exist Carmichael numbers that are also strong pseudoprimes.

Further reading

Links