Number theory/Signed Articles/Elementary diophantine approximations: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Wlodzimierz Holsztynski
imported>John Stephenson
m (John Stephenson moved page WYA:Elementary diophantine approximations to Number theory/Signed Articles/Elementary diophantine approximations without leaving a redirect: article from old initiative)
 
(62 intermediate revisions by 2 users not shown)
Line 6: Line 6:


How well can real numbers (all of them or the special ones) be approximated by rational numbers? A typical Diophantine approximation result states:
How well can real numbers (all of them or the special ones) be approximated by rational numbers? A typical Diophantine approximation result states:


'''Theorem'''&nbsp; Let <math>\ a</math>&nbsp; be an arbitrary real number. Then
'''Theorem'''&nbsp; Let <math>\ a</math>&nbsp; be an arbitrary real number. Then


* <math>\ a</math>&nbsp; is rational if and only if there exists a real number C > 0 such that
* <math>\ a</math>&nbsp; is rational &nbsp; <math>\Leftrightarrow</math> &nbsp; there exists a real number C > 0 such that


:::<math>|a - \frac{x}{y}| > \frac{C}{y}</math>
:::<math>\left|a - \frac{x}{y}\right| > \frac{C}{y}</math>


for arbitrary integers <math>\ (x,y)</math>&nbsp; such that <math>\ y>0</math>&nbsp; and <math>\ a\ne \frac{x}{y};</math>
for arbitrary integers <math>\ (x,y)</math>&nbsp; such that <math>\ y>0</math>&nbsp; and <math>\ a\ne \frac{x}{y};</math>


* ([[Adolph Hurwitz]]) &nbsp; <math>\ a</math>&nbsp; is irrational if and only if there exist infinitely many pairs of integers <math>\ (x,y)</math>&nbsp; such that <math>\ y>0</math>&nbsp; and
* ([[Adolph Hurwitz]]) &nbsp; <math>\ a</math>&nbsp; is irrational &nbsp; <math>\Leftrightarrow</math> &nbsp; there exist infinitely many pairs of integers <math>\ (x,y)</math>&nbsp; such that <math>\ y>0</math>&nbsp; and
 
:::<math>\left|a - \frac{x}{y}\right| < \frac{1}{\sqrt{5}\cdot y^2}.</math>
 


:::<math>|a - \frac{x}{y}| < \frac{1}{\sqrt{5}\cdot y^2}.</math>
'''Remark'''&nbsp; Implication &nbsp; <math>\Leftarrow</math> &nbsp; of the first part of the theorem is a simple and satisfaction bringing exercise.


== Notation ==
== Notation ==
Line 43: Line 47:
== The method of neighbors and median ==
== The method of neighbors and median ==


In this section we will quickly obtain some results about approximating irrational numbers by rational (for the sake of simplicity only positive numbers will be considered). To this end we will not worry about the details of the difference between a rational number and a fraction (with integer numerator and denominator)&mdash;this will not cause any problems;&nbsp;fully crisp notions will be developed in the next sections, they will involve 2-dimensional vectors and 2x2 matrices. This section is still introductory. It is supposed to provide quick insight into the topic.
In this section we will quickly obtain some results about approximating irrational numbers by rational. To this end we will not worry about the details of the difference between a rational number and a fraction (with integer numerator and denominator)&mdash;this will not cause any problems;&nbsp;fully crisp notions will be developed in the next sections, they will involve 2-dimensional vectors and 2x2 matrices. This section is still introductory. It is supposed to provide quick insight into the topic.
 
=== Definitions ===
   
   
Fractions <math>\frac{a}{c}</math>&nbsp; and <math>\frac{b}{d},</math>&nbsp; with integer numerators and natural denominators, are called '''neighbors''' (in the given order) &nbsp; <math>\Leftarrow:\Rightarrow</math>
Fractions <math>\frac{a}{c}</math>&nbsp; and <math>\frac{b}{d},</math>&nbsp; with integer numerators and natural denominators, are called '''neighbors''' (in the given order) &nbsp; <math>\Leftarrow:\Rightarrow</math>
Line 53: Line 59:
* If &nbsp;<math>\frac{a}{c}</math>&nbsp; and <math>\frac{b}{d}</math>&nbsp; are neighbors then&nbsp; <math>\ a\cdot b\ge 0</math> &nbsp; ( i.e. &nbsp;<math>\frac{a}{c}\cdot \frac{b}{d}\ \ge  0</math> ).
* If &nbsp;<math>\frac{a}{c}</math>&nbsp; and <math>\frac{b}{d}</math>&nbsp; are neighbors then&nbsp; <math>\ a\cdot b\ge 0</math> &nbsp; ( i.e. &nbsp;<math>\frac{a}{c}\cdot \frac{b}{d}\ \ge  0</math> ).


* Let <math>\ a,b,c,d\in\mathbb{N}.</math> &nbsp; Fractions <math>\frac{a}{c}</math>&nbsp; and <math>\frac{b}{d}</math>&nbsp; are neighbors &nbsp; <math>\Leftrightarrow</math> &nbsp; fractions <math>\frac{d}{b}</math>&nbsp; and <math>\frac{c}{a}</math>&nbsp; are neighbors.
* Let <math>\ a,b,c,d\in\mathbb{N}.</math> &nbsp; Fractions <math>\frac{a}{c}</math>&nbsp; and <math>\frac{b}{d}</math>&nbsp; are neighbors &nbsp; <math>\Leftrightarrow</math> &nbsp; fractions <math>\frac{d}{b}</math>&nbsp; and <math>\frac{c}{a}</math>&nbsp; are neighbors &nbsp; <math>\Leftrightarrow</math> &nbsp; fractions <math>\frac{-b}{d}</math>&nbsp; and <math>\frac{-a}{c}</math>&nbsp; are neighbors.
 


'''Examples:'''
'''Examples:'''
Line 64: Line 71:


::: <math>\frac{a}{c}\ >\ x\ >\ \frac{b}{d}</math>&nbsp;
::: <math>\frac{a}{c}\ >\ x\ >\ \frac{b}{d}</math>&nbsp;
'''Definition'''&nbsp; A pair of neighboring fractions <math>\left(\frac{a}{c},\frac{b}{d}\right),</math>&nbsp; with integer numerators and natural denominators, is called a ''top pair'' &nbsp; <math>\Leftarrow:\Rightarrow\ c > d.</math> &nbsp; Otherwise it is called a ''bottom pair''.
Thus now we have notions of top/bottom neighbors and of top/bottom pairs of neighbors.
* Let&nbsp; <math>\left(\frac{a}{c},\frac{b}{d}\right),</math>&nbsp; be a pair of neighbors. Then&nbsp; <math>\left(\frac{a}{c},\frac{a+b}{c+d}\right)</math>&nbsp; is a top pair of neighbors, and&nbsp; <math>\left(\frac{a+b}{c+d},\frac{b}{d}\right)</math>&nbsp; is a bottom pair of neighbors.
&nbsp;


=== First results ===
=== First results ===


'''Theorem'''&nbsp; Let fractions <math>\frac{a}{c}</math>&nbsp; and <math>\frac{b}{d},</math>&nbsp; with integer numerators and natural denominators, be neighbors. Then
'''Theorem'''&nbsp; Let fractions <math>\frac{a}{c}</math>&nbsp; and <math>\frac{b}{d},</math>&nbsp; with integer numerators and natural denominators, be neighbors. Then
:* if integers <math>\ t>0</math>&nbsp; and <math>\ s</math>&nbsp; are such that &nbsp; <math>\ \frac{a}{c} > \frac{s}{t} > \frac{b}{d},</math> &nbsp; then &nbsp; <math>t \ge b+d;</math>
:* if integers <math>\ t>0</math>&nbsp; and <math>\ s</math>&nbsp; are such that &nbsp; <math>\ \frac{a}{c} > \frac{s}{t} > \frac{b}{d},</math> &nbsp; then &nbsp; <math>t \ge c+d;</math>


:* the '''median''' &nbsp;<math>\frac{a+b}{c+d}</math>&nbsp; is a bottom neighbor of &nbsp;<math>\frac{a}{c},</math>&nbsp; and a top neighbor of&nbsp; <math>\frac{b}{d};</math>&nbsp;
:* the '''median''' &nbsp;<math>\frac{a+b}{c+d}</math>&nbsp; is a bottom neighbor of &nbsp;<math>\frac{a}{c},</math>&nbsp; and a top neighbor of&nbsp; <math>\frac{b}{d};</math>&nbsp;
Line 78: Line 94:
:and
:and


:<math>0\ <\ \frac{a}{c}-x\ <\ \frac{1}{c\cdot (c+1)}</math> &nbsp; &nbsp; &nbsp; or &nbsp; &nbsp; &nbsp; <math>0\ <\ x-\frac{b}{d}\ <\ \frac{1}{d\cdot (d+1)}</math>
:<math>0\ <\ \frac{a}{c}-x\ <\ \frac{1}{2\cdot c^2}</math> &nbsp; &nbsp; &nbsp; or &nbsp; &nbsp; &nbsp; <math>0\ <\ x-\frac{b}{d}\ <\ \frac{1}{2\cdot d^2}</math>




Line 95: Line 111:


which is the first part of our theorem.
which is the first part of our theorem.


The second part of the theorem is obtained by a simple calculation, straight from the definition of the neighbors.
The second part of the theorem is obtained by a simple calculation, straight from the definition of the neighbors.


the first inequality of the third part of the theorem is instant:
 
The first inequality of the third part of the theorem is instant:


:<math>\max(\frac{a}{c}-x,\, x-\frac{b}{d})\ <\ (\frac{a}{c}-x)+(x-\frac{b}{d})\ =\ \frac{1}{c\cdot d}</math>
:<math>\max(\frac{a}{c}-x,\, x-\frac{b}{d})\ <\ (\frac{a}{c}-x)+(x-\frac{b}{d})\ =\ \frac{1}{c\cdot d}</math>


Next, either
Next,
 
 
:::<math>\left(\frac{1}{c}-\frac{1}{d}\right)^2\ \ge\ 0</math>
 
hence
 
::<math>\frac{1}{2\cdot c^2}+\frac{1}{2\cdot d^2}\ \ge\ \frac{1}{c\cdot d}\ =\ \frac{a}{c}-\frac{b}{d}</math>


:<math>\frac{a}{c}\ >\ x\ >\ \frac{a+b}{c+d}</math>
or
:<math>\frac{a+b}{c+d}\ >\ x\ >\ \frac{b}{d}</math>


and we get the respective required inequality in each case:
::::<math> =\ \left|\mathit{Span}(\frac{a}{c},\frac{b}{d})\right|</math>
 
and
 
::<math>\frac{b}{d}+\frac{1}{2\cdot d^2}\ \ge\ \frac{a}{c}-\frac{1}{2\cdot c^2}</math>


::<math>\frac{a}{c}-x\ <\ \frac{1}{c\cdot (c+d)}\ \le\ \frac{1}{c\cdot (c+1)}</math>
i.e.


or, respectively,
<math>\mathit{Span}\left(\frac{a}{c},\frac{a}{c}-\frac{1}{2\cdot c^2}\right)\ \cup\ \mathit{Span}\left(\frac{b}{d}+\frac{1}{2\cdot d^2},\frac{b}{d}\right)\ \backslash\ \mathbb{Q}\ \supseteq\  \mathit{Span}\left(\frac{a}{c},\frac{b}{d}\right)\ \backslash\ \mathbb{Q}</math>


::<math>x-\frac{b}{d}\ <\ \frac{1}{d\cdot (c+d)}\ \le\ \frac{1}{d\cdot (d+1)}</math>


'''End of proof'''
'''End of proof'''
'''Corollary'''&nbsp; Let fractions <math>\frac{a}{c}</math>&nbsp; and <math>\frac{b}{d},</math>&nbsp; with integer numerators and natural denominators, be neighbors. Then, if integers <math>\ t>0</math>&nbsp; and <math>\ s</math>&nbsp; are such that &nbsp; <math>\ \frac{a}{c} > \frac{s}{t} > \frac{b}{d},</math> &nbsp; then either
* <math>s=a+b\quad\and\quad t=c+d;</math>
or
* <math>t\ \ge\ c+d+\min(c,d)\ >\ c+d</math>


&nbsp;
&nbsp;


=== Squeezing irrational numbers between neighbors ===
=== Hurwitz theorem ===
 
:Let &nbsp;<math>\ x\in \mathbb{R}</math>&nbsp; be an arbitrary irrational number. Then
 
::::<math>\left|x-\frac{s}{t}\right|\ <\ \frac{1}{\sqrt{5}\cdot t^2}</math>
 
:for infinitely many different <math>\ s,t\in\mathbb{Z} \backslash \{0\}.</math>


Let <math>\ x > 0</math>&nbsp; be an irrational number, We may always squeeze it between the extremal neighbours:


:::<math>\frac{1}{0}\ >\ x\ >\ \frac{0}{1}</math>
==== Lemma 1 ====


But if you don't like infinity (on the left above) then you may do one of the two things:
Let&nbsp; <math>\ c,d\in\mathbb{N}.</math>&nbsp; Let&nbsp; <math>\ C:=c+d.</math>&nbsp; Then:


:<math>x > 1\quad\quad\Rightarrow\quad\quad\frac{n+1}{1} > x > \frac{n}{1}</math>


:::<math>c^2-\sqrt{5}\!\cdot\! c\!\cdot\! d+d\,^2\ >\ 0</math>
or
or
:::<math>C\,^2-\sqrt{5}\cdot\! C\!\cdot\! d+d\,^2\ >\ 0</math>
'''Proof of lemma 1'''&nbsp; It's easy to show that&nbsp; <math>\sqrt{2}\cdot c \ne \sqrt{3-\sqrt{5}}\cdot d.</math>&nbsp; Thus the square of&nbsp; <math>\ X := \sqrt{2}\cdot c - \sqrt{3-\sqrt{5}}\cdot d</math>&nbsp; is positive. Now,
:::<math>\sqrt{2}\cdot \sqrt{3-\sqrt{5}}\ =\ \sqrt{5}-1</math>
which means that we may write&nbsp; <math>\ X^2</math>&nbsp; as follows:
:<math>2\!\cdot\! c^2\ -\ 2\!\cdot\!(\sqrt{5}-1)\cdot c\!\cdot\! d\ +\ (3-\sqrt{5})\!\cdot\! d\,^2\ >\ 0</math>
i.e.
:<math>(c^2-\sqrt{5}\cdot c\cdot d+d^2)\ +\ (C^2-\sqrt{5}\cdot C\cdot d+d^2)\ >\ 0</math>


:<math>x < 1\quad\quad\Rightarrow\quad\quad\frac{1}{n} > x > \frac{1}{n+1}</math>
 
and lemma 1 follows.&nbsp; '''End of proof'''
 
==== Lemma 2 ====
 
Let&nbsp; <math>\ a,b\in\mathbb{Z}</math>&nbsp; and&nbsp; <math>\ c,d\in\mathbb{N}.</math>&nbsp; Let&nbsp; <math>\ A:=a+b</math>&nbsp; and&nbsp; <math>\ C:=c+d.</math>&nbsp; Furthermore, let fractions&nbsp; <math>\frac{a}{c},\frac{b}{d},</math>&nbsp; be neighbors, and let:
 
:::<math>\frac{A}{C}\ >\ x\ >\ \frac{b}{d}</math>
 
where&nbsp;<math>\ x</math>&nbsp; is real. Then one of the following three inequalities holds:
 
:::* <math>0\ <\ \frac{a}{c}-x\ <\ \frac{1}{\sqrt{5}\cdot c^2}</math>
 
 
:::* <math>0\ <\ \frac{A}{C}-x\ <\ \frac{1}{\sqrt{5}\cdot C^2}</math>
 
 
:::* <math>0\ <\ x-\frac{b}{d}\ <\ \frac{1}{\sqrt{5}\cdot d^2}</math>
 
 
'''Proof'''&nbsp; There are two cases along the inequalities of Lemma 1. Let's assume the first one, which is equivalent to:




where in each of these two cases&nbsp; <math>\ n\in \mathbb{N}</math> &nbsp; is a respective unique positive integer.
:<math>\frac{1}{\sqrt{5}\cdot c^2} + \frac{1}{\sqrt{5}\cdot d\,^2}\ >\ \frac{1}{c\cdot d}\ =\ \frac{a}{c}-\frac{b}{d}\ =\ \left|\mathit{Span}\left(\frac{a}{c},\frac{b}{d}\right)\right|</math>


It was mentioned in the previous section ('''''First results''''') that if fractions <math>\frac{a}{c}</math>&nbsp; and <math>\frac{b}{d},</math>&nbsp; with positive (or non-negative) integer numerators and denominators are neighbors then also the top and the bottom (''bot'' &nbsp;for short) pair:


*<math>\mathit{top}\!\left(\frac{a}{c},\frac{b}{d}\right)\ :=\ \left(\frac{a}{c},\frac{a+b}{b+d}\right)</math>
Thus


and


*<math>\mathit{bot}\!\left(\frac{a}{c},\frac{b}{d}\right)\ :=\ \left(\frac{a+b}{c+d},\frac{b}{d}\right)</math>
::<math>\frac{b}{d}+\frac{1}{\sqrt{5}\cdot d\,^2}\ >\ \frac{a}{c}-\frac{1}{\sqrt{5}\cdot c^2}</math>




are both pairs of neighbors.
which means that


Let <math>\ A_0</math>&nbsp; be a pair of neighbors, and <math>\ x\in \mathit{Span}(A_0)</math> &mdash; an irrational number. Assume that pairs of neighbors <math>\ A_0,\dots,A_{n-1}</math>&nbsp; are already defined, and that they squeeze <math>\ x,</math> i.e. that <math>\ x\in\mathit{Span}(A_k)</math>&nbsp; for each <math>\ k=0,\dots,n-1.</math>&nbsp; Then we define <math>\ A_n</math>&nbsp; as the one of the two pairs: <math>\ \mathit{top}(A_{n-1})</math> &nbsp;or&nbsp; <math>\ \mathit{bot}(A_{n-1}),</math> &nbsp;which squeezes <math>\ x.</math>&nbsp; Thus for every positive irrational number we have obtained an infinite sequence of pairs of neighbors, each squeezing the given irrational number more and more. Thus for arbitrary irrational <math>\ x</math>&nbsp; there exist fractions of integers <math>\ \frac{s}{t},</math>&nbsp; with arbitrarily large denominators, such that
::<math>\mathit{Span}\left(\frac{a}{c},\frac{a}{c}-\frac{1}{\sqrt{5}\cdot c^2}\right)\ \cup\ \mathit{Span}\left(\frac{b}{d}+\frac{1}{\sqrt{5}\cdot d\,^2},\frac{b}{d}\right)\ \supseteq\ \mathit{Span}\left(\frac{a}{c},\frac{b}{d}\right)</math>


:::<math>\left|x - \frac{s}{t}\right|\ <\ \frac{1}{t\cdot(t+1)}</math>


(apply theorem from section '''''First results'''''). Let's get a sharper result:
::::<math>\supseteq\ \mathit{Span}\left(\frac{A}{C},\frac{b}{d}\right)</math>


First of all, since <math>\ x</math> is irrational, the direction top-bottom of the sequence of pairs of neighbors changes infinitely many times, i.e.
Thus lemma 2 is proven when the first inequality of lemma 1 holds. By replacing in the above proof the lower case&nbsp; <math>\ a,c,</math>&nbsp; by the upper case&nbsp; <math>\ A,C,</math>&nbsp; we obtain the proof when the second inequality of lemma 1 holds.


:<math>A_{n+1} = \mathit{top}(A_n),\quad\quad A_{n+2} = \mathit{rgt}(A_{n+1})</math>
'''End of proof''' (of lemma 2)


==== Lemma 2' ====


for infinitely many values of &nbsp;<math>n\in\mathbb{Z}_+,</math> &nbsp; '''and'''
Let&nbsp; <math>\ a,b\in\mathbb{Z}</math>&nbsp; and&nbsp; <math>\ c,d\in\mathbb{N}.</math>&nbsp; Let&nbsp; <math>\ A:=a+b</math>&nbsp; and&nbsp; <math>\ C:=c+d.</math>&nbsp; Furthermore, let fractions&nbsp; <math>\frac{a}{c},\frac{b}{d},</math>&nbsp; be neighbors, and let:


:<math>A_{n+1} = \mathit{bot}(A_n),\quad\quad A_{n+2} = \mathit{lft}(A_{n+1})</math>
:::<math>\frac{a}{c}\ >\ x\ >\ \frac{A}{C}</math>


where&nbsp;<math>\ x</math>&nbsp; is real. Then one of the following three inequalities holds:


for infinitely many values of &nbsp;<math>n\in\mathbb{Z}_+</math>&nbsp; as well. Thus there are infinitely many different <math>\ n</math>&nbsp; of each of the two kinds. The other two kinds (which may or may not actually occur) are described by conditions:
:::* <math>0\ <\ x - \frac{b}{d}\ <\ \frac{1}{\sqrt{5}\cdot d\,^2}</math>


:<math>A_{n+1} = \mathit{top}(A_n),\quad\quad A_{n+2} = \mathit{top}(A_{n+1})</math>


and
:::* <math>0\ <\ x-\frac{A}{C} <\ \frac{1}{\sqrt{5}\cdot C^2}</math>


:<math>A_{n+1} = \mathit{bot}(A_n),\quad\quad A_{n+2} = \mathit{bot}(A_{n+1})</math>


:::* <math>0\ <\ \frac{a}{c}\ <\ \frac{1}{\sqrt{5}\cdot x^2}</math>


Let <math>\ A_n := (\frac{a}{c},\,\frac{b}{d})</math>&nbsp; be a pair of neighbors for which the top-top property above holds, i.e. for which <math>\ x</math>&nbsp; is squeezed between a pair of neighbors as follows:


:::<math>\frac{a}{c}\ >\ x\ >\ \frac{2\cdot a+b}{2\cdot c+d}</math>
'''Proof'''&nbsp; It's similar to the proof of lemma 2. Or one may apply lemma 2 to&nbsp; <math>\ x':=-x,\ a':=-b,\ b':=-a,</math>&nbsp; and&nbsp; <math>\ c':=d,\ d':=c</math>, which would provide us with the respective fraction&nbsp; <math>\frac{s'}{t'}.</math>&nbsp; Then the required&nbsp; <math>\ s,t,</math>&nbsp; are given by&nbsp; <math>s:=-s',\ t:=t'.</math>


Then
'''End of proof''' (of lemma 2')


::<math>0\ <\ \frac{a}{c}-x\ <\ \frac{1}{c\cdot(2\cdot c+d)}\ <\ \frac{1}{2\cdot c^2}</math>
&nbsp;


==== Proof of Hurwitz theorem ====


Similarly, in the bot-bot case we get
When &nbsp;<math>\ x</math>&nbsp; is irrational, then it is squeezed between infinitely many different pairs of neighbors (see part two of the theorem from the '''''First results''''' section). They provide infinitely many different required fractions&nbsp; <math>\frac{s}{t}</math>&nbsp; (see lemma 2 and 2' above; but it is not claimed, nor true, that different pairs of neighbors provide different required fractions).


::<math>0\ <\ x-\frac{b}{d}\ <\ \frac{1}{d\cdot(c+2\cdot d)}\ <\ \frac{1}{2\cdot d^2}</math>
'''End of proof'''


&nbsp;


Thus if the top-top or the bot-bot case holds infinitely many times then there exist infinitely many fractions of natural numbers&nbsp; <math>\frac{s}{t}</math>&nbsp; such that:
=== Squeezing irrational numbers between neighbors ===


::: <math>\left|x-\frac{s}{t}\right|\ <\ \frac{1}{2\cdot t^2}</math>
Let <math>\ x > 0</math>&nbsp; be an irrational number, We may always squeeze it between the extremal neighbours:


On the other hand, if cases top-top and bot-bot happen only finitely many times then starting with an <math>\ n</math>&nbsp; we get an infinite alternating top-bot-top-bot-... sequence:
:::<math>\frac{1}{0}\ >\ x\ >\ \frac{0}{1}</math>


:<math>A_{n+1} = \mathit{top}(A_n),\quad A_{n+2} = \mathit{bot}(A_{n+1}),\quad A_{n+3} = \mathit{top}(A_{n+1})\quad\dots</math>
But if you don't like infinity (on the left above) then you may do one of the two things:


Then the new neighbor of the <math>\ A_{n+k}</math>&nbsp; pair (i.e. the median of the previous pair <math>\ A_{n+k-1}</math>)&nbsp; is equal to
:<math>x > 1\quad\quad\Rightarrow\quad\quad\frac{n+1}{1} > x > \frac{n}{1}</math>


::<math>e_{k}\ :=\ \frac{F_{k+1}\cdot a + F_{k}\cdot b}{F_{k+1}\cdot c + F_{k}\cdot d}</math>
or


for every <math>\ k=1,2,\dots,</math>&nbsp; where <math>\ F_{t}</math>&nbsp; are the [[Fibonacci number]]s. It is known that
:<math>x < 1\quad\quad\Rightarrow\quad\quad\frac{1}{n} > x > \frac{1}{n+1}</math>


:::<math>\lim_{k\rightarrow\infty}\frac{F_{k+1}}{F_k}\ =\ \Phi\ :=\ \frac{\sqrt{5}+1}{2}</math>
hence


::<math>x\ =\ \lim_{k\rightarrow\infty}e_k\ =\ \frac{\Phi\cdot a+b}{\Phi\cdot c+d}</math>
where in each of these two cases&nbsp; <math>\ n\in \mathbb{N}</math> &nbsp; is a respective unique positive integer.


Thus
It was mentioned in the previous section ('''''First results''''') that if fractions <math>\frac{a}{c}</math>&nbsp; and <math>\frac{b}{d},</math>&nbsp; with positive (or non-negative) integer numerators and denominators are neighbors then also the top and the bottom (''bot'' &nbsp;for short) pair:


:::<math>\frac{a}{c}-x\ =\ \frac{1}{c\cdot(\Phi\cdot c+d)}</math>
*<math>\mathit{top}\!\left(\frac{a}{c},\frac{b}{d}\right)\ :=\ \left(\frac{a}{c},\frac{a+b}{b+d}\right)</math>


and
and


:::<math>x-\frac{b}{d}\ =\ \frac{\Phi}{(\Phi\cdot c+d)\cdot d}</math>
*<math>\mathit{bot}\!\left(\frac{a}{c},\frac{b}{d}\right)\ :=\ \left(\frac{a+b}{c+d},\frac{b}{d}\right)</math>


If &nbsp;<math>\ d > \frac{c}{\Phi}</math>&nbsp; then


::<math>0\ <\ \frac{a}{c} - x\ <\ \frac{1}{c^2}\cdot\frac{1}{\Phi+\frac{1}{\Phi}}\ =\ \frac{1}{\sqrt{5}\cdot c^2}</math>
are both pairs of neighbors.


and if &nbsp;<math>\ d < \frac{c}{\Phi},</math>&nbsp; i.e.&nbsp; <math>\ c > \Phi\cdot d,</math>&nbsp; then
Let <math>\ A_0</math>&nbsp; be a pair of neighbors, and <math>\ x\in \mathit{Span}(A_0)</math> be an irrational number. Assume that pairs of neighbors <math>\ A_0,\dots,A_{n-1}</math>&nbsp; are already defined, and that they squeeze <math>\ x,</math> i.e. that <math>\ x\in\mathit{Span}(A_k)</math>&nbsp; for each <math>\ k=0,\dots,n-1.</math>&nbsp; Then we define <math>\ A_n</math>&nbsp; as the one of the two pairs: <math>\ \mathit{top}(A_{n-1})</math> &nbsp;or&nbsp; <math>\ \mathit{bot}(A_{n-1}),</math> &nbsp;which squeezes <math>\ x.</math>&nbsp; Thus for every positive irrational number we have obtained an infinite sequence of pairs of neighbors, each squeezing the given irrational number more and more. Thus for arbitrary irrational <math>\ x</math>&nbsp; there exist fractions of integers <math>\ \frac{s}{t},</math>&nbsp; with arbitrarily large denominators, such that


::<math>0\ <\ x-\frac{b}{d}\ <\ \frac{\Phi}{(\Phi^2+1)\cdot d^2}\ =\ \frac{1}{\sqrt{5}\cdot d^2}</math>
:::<math>\left|x - \frac{s}{t}\right|\ <\ \frac{1}{\sqrt{5}\cdot t^2}</math>


Since&nbsp; <math>\sqrt(5)>2,</math> and due to the earlier inequalities which have covered the top-top and the bot-bot cases, we have obtained the following theorem:
(see section '''''Hurwitz theorem''''').


* for arbitrary irrational number there exist infinitely many different fractions <math>\ \frac{s}{t},</math>&nbsp; with integer numerator and non-zero denominator, such that:
If cases top-top and bot-bot happen only finitely many times then starting with an <math>\ n</math>&nbsp; we get an infinite alternating top-bot-top-bot-... sequence:
:::<math>\left|x-\frac{s}{t}\right|\ <\ \frac{1}{2\cdot t^2}</math>


However, we are close to replacing constant&nbsp; <math>\ 2</math>&nbsp; by &nbsp;<math>\sqrt{5}</math>&nbsp; in the above denominator. Let's do it:
:<math>A_{n+1} = \mathit{top}(A_n),\quad A_{n+2} = \mathit{bot}(A_{n+2}),\quad A_{n+3} = \mathit{top}(A_{n+1})\quad\dots</math>
 
 
Then the new neighbor of the <math>\ A_{n+k}</math>&nbsp; pair (i.e. the median of the previous pair <math>\ A_{n+k-1}</math>)&nbsp; is equal to
 
::<math>e_{k}\ :=\ \frac{F_{k+1}\cdot a + F_{k}\cdot b}{F_{k+1}\cdot c + F_{k}\cdot d}</math>
 
for every <math>\ k=1,2,\dots,</math>&nbsp; where <math>\ F_{t}</math>&nbsp; are the [[Fibonacci number]]s, where
 
:::<math>\left(\frac{a}{c},\frac{b}{d}\right)\ :=\ A_n</math>
 
It is known that
 
:::<math>\lim_{k\rightarrow\infty}\frac{F_{k+1}}{F_k}\ =\ \Phi\ :=\ \frac{\sqrt{5}+1}{2}</math>
hence
 
::<math>x\ =\ \lim_{k\rightarrow\infty}e_k\ =\ \frac{\Phi\cdot a+b}{\Phi\cdot c+d}</math>


&nbsp;


=== Hurwitz theorem ===
But if our infinite alternation has started with ''bot'' :


* Let &nbsp;<math>\ x\in \mathbb{R}</math>&nbsp; be an arbitrary irrational number. Then
:<math>A_{n+1} = \mathit{bot}(A_n),\quad A_{n+2} = \mathit{top}(A_{n+2}),\quad A_{n+3} = \mathit{bot}(A_{n+1})\quad\dots</math>


:::<math>\left|x-\frac{s}{t}\right|\ <\ \frac{1}{\sqrt{5}\cdot t^2}</math>
Then we would have


for infinitely many different <math>\ s,t\in\mathbb{Z} \backslash \{0\}.</math>
::<math>x\ =\ \lim_{k\rightarrow\infty}e_k\ =\ \frac{a+\Phi\cdot b}{c+\Phi\cdot d}</math>


&nbsp;


=== Proof of Hurwitz Theorem ===
=== Another proof of Hurwitz Theorem (further insight) ===


==== Reduction to x > 0 ====
==== Reduction to x > 0 ====
Line 267: Line 353:


==== The top-top-bot case ====
==== The top-top-bot case ====
Let's consider the latter top-top-bot case. Let <math>\ \xi := \frac{d}{c}.</math>&nbsp; The squeeze by neighbors:
Let's consider the latter top-top-bot case. Let&nbsp; <math>\ \xi := \frac{d}{c}.</math>&nbsp; The squeeze by neighbors:


:::<math>\frac{a}{c}\ >\ x\ >\ \frac{2\cdot a+b}{2\cdot c+d}</math>
:::<math>\frac{a}{c}\ >\ x\ >\ \frac{2\cdot a+b}{2\cdot c+d}</math>
Line 312: Line 398:
Conclusion:
Conclusion:


  <math>0\ <\ \frac{a}{c}-x\ <\ \frac{2}{(5+2\cdot\xi)}\cdot\frac{1}{c^2}\quad\quad\Leftarrow\quad\quad x\in B</math>
  <math>0\ <\ \frac{a}{c}-x\ <\ \frac{2}{5+2\cdot\xi}\cdot\frac{1}{c^2}\quad\quad\Leftarrow\quad\quad x\in B</math>


==== Neighborhood C (first C-inequality) ====
==== Neighborhood C (first C-inequality) ====
Line 360: Line 446:
  <math>0\ <\ x-\frac{\alpha}{\gamma}\ <\ \frac{2+\xi}{7+3\cdot\xi}\cdot\frac{1}{\gamma^2}\quad\quad\Leftarrow\quad\quad x\in D</math>
  <math>0\ <\ x-\frac{\alpha}{\gamma}\ <\ \frac{2+\xi}{7+3\cdot\xi}\cdot\frac{1}{\gamma^2}\quad\quad\Leftarrow\quad\quad x\in D</math>


==== Early yield (Hurwitz Theorem) ====
Let's impatiently indulge ourselves in already getting some crude results from the above hard work (:-). The above three BCD-conclusions instantly imply:
* <math>0\ <\ \frac{a}{c}-x\ <\ \frac{2}{5}\cdot\frac{1}{c^2}\quad\quad\Leftarrow\quad\quad x\in B</math>
* <math>0\ <\ \frac{a}{c}-x\ <\ \frac{3}{7}\cdot\frac{1}{c^2}\quad\quad\Leftarrow\quad\quad x\in C</math>
*  <math>0\ <\ x-\frac{\alpha}{\gamma}\ <\ \frac{2}{7}\cdot\frac{1}{\gamma^2}\quad\quad\Leftarrow\quad\quad x\in D</math>
Since
:::<math>\max(\frac{2}{5},\,\frac{3}{7},\,\frac{2}{7})\ =\ \frac{3}{7}\ <\ \frac{1}{\sqrt{5}},</math>
each occurrence of the top-top-bot subsequence, i.e. of equalities:
:<math>A_{n+1} = \mathit{top}(A_n),\quad A_{n+2} = \mathit{top}(A_{n+1}),\quad A_{n+3} = \mathit{bot}(A_{n+2})\quad\dots</math>
provides a fraction&nbsp; <math>\frac{s}{t}\in \mathit{Span}(A_{n+3}),</math>&nbsp; with integer numerator and natural denominator, such that
:<math>\left|x-\frac{s}{t}\right|\ <\ \frac{3}{7}\cdot\frac{1}{t^2}\ <\ \frac{1}{\sqrt{5}}\cdot\frac{1}{t^2}</math>
The same is holds for every occurrence of the bot-bot-top sequence, which can be shown now mechanically by a proof similar to the proof of the top-top-bot case, or as follows: define the squeezing sequence of&nbsp; <math>\ -x</math>&nbsp; by:
::<math>B_n := (\frac{-b}{d},\frac{-a}{c})</math> &nbsp; &nbsp; for &nbsp; &nbsp; <math>A_n = (\frac{a}{c},\frac{b}{d})</math>
Let&nbsp; <math>\left(A_n,A_{n+1},A_{n+2},A_{n+3}\right)</math>&nbsp; be a bot-bot-top progression. Then&nbsp; <math>\left(B_n,B_{n+1},B_{n+2},B_{n+3}\right)</math>&nbsp; is a top-top-bot progression which squeezes&nbsp; <math>\ -x.</math> Thus
:<math>\left|(-x)-\frac{u}{w}\right|\ <\ \frac{3}{7}\cdot\frac{1}{w^2}\ <\ \frac{1}{\sqrt{5}}\cdot\frac{1}{w^2}</math>
for certain&nbsp; <math>\frac{u}{w}\in \mathit{Span}(B_{n+3}),</math>&nbsp; with integer numerator and natural denominator. Then&nbsp; <math>\frac{s}{t}\in\mathit{Span}(A_{n+3}),</math>&nbsp; for&nbsp; <math>\ (s,t):=(-u,w),</math>&nbsp; satisfies:
:<math>\left|x-\frac{s}{t}\right|\ <\ \frac{3}{7}\cdot\frac{1}{t^2}\ <\ \frac{1}{\sqrt{5}}\cdot\frac{1}{t^2}</math>
When another top-top-bot or bot-bot-top progression starts with a sufficiently large index&nbsp; <math>\ n',</math>&nbsp; then&nbsp; <math>\left|\mathit{Span}(A_{n'+3})\right| < \left|x-\frac{s}{t}\right|,</math>&nbsp; which means that the respective new approximation&nbsp; <math>\frac{s'}{t'}\in\mathit{Span}(A_{n'+3})</math>&nbsp; is different. It follows that if there are infinitely many progressions top-top-bot or bot-bot-bot then there are infinitely many fractions&nbsp; <math>\ \frac{s}{t},</math> which satisfy the inequality above. Thus we have obtained the following version of '''Hurwitz theorem''':
:'''Theorem'''&nbsp; Let&nbsp; <math>x\in\mathbb{R}\backslash\mathbb{Q}</math>&nbsp; be an arbitrary irrational number. Then inequality
:*<math>\left|x-\frac{s}{t}\right|\ <\ \frac{1}{\sqrt{5}}\cdot\frac{1}{t^2}</math>
:holds for infinitely many fractions&nbsp; <math>\ \frac{s}{t},</math>&nbsp; with integer numerator and natural denominator. Furthermore, if the squeezing sequence of&nbsp; <math>\ x</math> does not eventually alternate top-bot-top-bot-... till infinity, i.e. if it has infinitely many top-top or bot-bot progressions, then
:*<math>\left|x-\frac{s}{t}\right|\ <\ \frac{3}{7
}\cdot\frac{1}{t^2}</math>
:holds for infinitely many fractions&nbsp; <math>\ \frac{s}{t},</math>&nbsp; with integer numerator and natural denominator.
&nbsp;


==== Neighborhood C (second C-inequality) ====
==== Neighborhood C (second C-inequality) ====
Line 386: Line 533:
:<math>=\ \frac{2+\xi}{5+2\cdot\xi}\cdot\frac{1}{\gamma^2}</math>
:<math>=\ \frac{2+\xi}{5+2\cdot\xi}\cdot\frac{1}{\gamma^2}</math>


Second C-conclusion:
<math>0\ <\ x-\frac{\alpha}{\gamma}\ <\ \frac{2+\xi}{5+2\cdot\xi}\cdot\frac{1}{\gamma^2}\quad\quad\Leftarrow\quad\quad x\in C</math>
==== Neigborhood C (the combined inequality) ====
Let:
:::<math>\xi_0\ :=\ \frac{\sqrt{61}-7}{6}</math>
Then
::<math>\frac{3}{7+3\cdot \xi_0}\ =\ \frac{2+\xi_0}{5+2\cdot\xi_0}\ =\ \frac{\sqrt{61}-7}{2}</math>
Thus for &nbsp;<math>\ \xi\ge\xi_0</math>:
:<math>\frac{3}{7+3\cdot \xi}\ \le\ \frac{\sqrt{61}-7}{2}</math>
and  for &nbsp;<math>\ \xi\le\xi_0</math>:
:<math>\frac{2+\xi}{5+2\cdot\xi}\ \le\ \frac{\sqrt{61}-7}{2}</math>
It follows that
* for one of the fractions&nbsp; <math>\frac{s}{t}\in\left\{\frac{a}{c},\,\frac{2\cdot a+b}{2\cdot c+d}\right\}</math>&nbsp;  the following inequality holds for every &nbsp;<math>\ x\in C:</math>
:::<math>\left|x-\frac{s}{t}\right|\ <\ \frac{\sqrt{61}-7}{2}</math>
(the choice of &nbsp;<math>\frac{s}{t}</math>&nbsp; depends on&nbsp; <math>\xi := \frac{d}{c}</math> ).


&nbsp;
&nbsp;
Line 564: Line 748:
and its length
and its length


:::<math>|M|\ :=\ \mathit{rat}(v)-\mathit{rat}(w)</math>
:::<math>diam(M)\ :=\ \mathit{rat}(v)-\mathit{rat}(w)</math>


where <math>\ v</math>&nbsp; is the left, and <math>\ w</math>&nbsp; is the right column of matrix M &mdash; observe that the rational representation of the left column of a special matrix is always greater than the rational representation of the right column of the same special matrix.
where <math>\ v</math>&nbsp; is the left, and <math>\ w</math>&nbsp; is the right column of matrix M &mdash; observe that the rational representation of the left column of a special matrix is always greater than the rational representation of the right column of the same special matrix.
Line 571: Line 755:
:::<math>M\ :=\ \left[\begin{array}{cc}a & b\\ c & d\end{array}\right]\in\mathit{SO}(\mathbb{Z}_+, 2)</math>
:::<math>M\ :=\ \left[\begin{array}{cc}a & b\\ c & d\end{array}\right]\in\mathit{SO}(\mathbb{Z}_+, 2)</math>


then&nbsp; <math>\ |M| = \frac{1}{c\cdot d}</math>
then&nbsp; <math>\ diam(M) = \frac{1}{c\cdot d}</math>

Latest revision as of 08:40, 15 March 2021

The theory of diophantine approximations is a chapter of number theory, which in turn is a part of mathematics. It studies the approximations of real numbers by rational numbers. This article presents an elementary introduction to diophantine approximations, as well as an introduction to number theory via diophantine approximations.

Introduction

In the everyday life our civilization applies mostly (finite) decimal fractions   Decimal fractions are used both as certain values, e.g. $5.85, and as approximations of the real numbers, e.g.   However, the field of all rational numbers is much richer than the ring of the decimal fractions (or of the binary fractions   which are used in the computer science). For instance, the famous approximation   has denominator 113 much smaller than 105 but it provides a better approximation than the decimal one, which has five digits after the decimal point.

How well can real numbers (all of them or the special ones) be approximated by rational numbers? A typical Diophantine approximation result states:


Theorem  Let   be an arbitrary real number. Then

  •   is rational     there exists a real number C > 0 such that

for arbitrary integers   such that   and

  • (Adolph Hurwitz)     is irrational     there exist infinitely many pairs of integers   such that   and


Remark  Implication     of the first part of the theorem is a simple and satisfaction bringing exercise.

Notation

  •   —   "equivalent by definition" (i.e. "if and only if");
  •   —   "equals by definition";
  •   —   "there exists";
  •   —   "for all";
  •   —   "  is an element of set ";

 

  •  —  the semiring of the natural numbers;
  •  —  the semiring of the non-negative integers;
  •  —  the ring of integers;
  •  —  the field of rational numbers;
  •  —  the field of real numbers;

 

 

  •   —   "  divides "   (i.e. );
  •  —  the greatest common divisor of integers   and

 

The method of neighbors and median

In this section we will quickly obtain some results about approximating irrational numbers by rational. To this end we will not worry about the details of the difference between a rational number and a fraction (with integer numerator and denominator)—this will not cause any problems; fully crisp notions will be developed in the next sections, they will involve 2-dimensional vectors and 2x2 matrices. This section is still introductory. It is supposed to provide quick insight into the topic.

Definitions

Fractions   and   with integer numerators and natural denominators, are called neighbors (in the given order)  

Fraction   is called the top neighbor of the other,   is called the bottom neighbor, and the interval   is called neighborhood; thus a neighborhood is an open interval such that its endpoints are neighbors.

  • If    and   are neighbors then    ( i.e.   ).
  • Let   Fractions   and   are neighbors     fractions   and   are neighbors     fractions   and   are neighbors.


Examples:

  • Fractions   and   are neighbors for every positive integer


  • Fractions   and   are neighbors for every positive integer

Thus it easily follows that for every positive irrational number   there exists a pair of neighbors    and    with positive numerators and denominators, such that:

 

Definition  A pair of neighboring fractions   with integer numerators and natural denominators, is called a top pair     Otherwise it is called a bottom pair.


Thus now we have notions of top/bottom neighbors and of top/bottom pairs of neighbors.

  • Let    be a pair of neighbors. Then    is a top pair of neighbors, and    is a bottom pair of neighbors.

 

First results

Theorem  Let fractions   and   with integer numerators and natural denominators, be neighbors. Then

  • if integers   and   are such that     then  
  • the median    is a bottom neighbor of    and a top neighbor of   
  • let    be an irrational number such that     then
and
      or      


Proof   Let     then

    and    

and

Multiplying this inequality by  gives

which is the first part of our theorem.


The second part of the theorem is obtained by a simple calculation, straight from the definition of the neighbors.


The first inequality of the third part of the theorem is instant:

Next,


hence


and

i.e.


End of proof


Corollary  Let fractions   and   with integer numerators and natural denominators, be neighbors. Then, if integers   and   are such that     then either

or

 

Hurwitz theorem

Let    be an arbitrary irrational number. Then
for infinitely many different


Lemma 1

Let    Let    Then:


or


Proof of lemma 1  It's easy to show that    Thus the square of    is positive. Now,



which means that we may write    as follows:


i.e.


and lemma 1 follows.  End of proof

Lemma 2

Let    and  Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ c,d\in\mathbb{N}.}   Let    and  Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ C:=c+d.}   Furthermore, let fractions  Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{a}{c},\frac{b}{d},}   be neighbors, and let:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{A}{C}\ >\ x\ >\ \frac{b}{d}}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x}   is real. Then one of the following three inequalities holds:

  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0\ <\ \frac{a}{c}-x\ <\ \frac{1}{\sqrt{5}\cdot c^2}}


  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0\ <\ \frac{A}{C}-x\ <\ \frac{1}{\sqrt{5}\cdot C^2}}


  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0\ <\ x-\frac{b}{d}\ <\ \frac{1}{\sqrt{5}\cdot d^2}}


Proof  There are two cases along the inequalities of Lemma 1. Let's assume the first one, which is equivalent to:


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{\sqrt{5}\cdot c^2} + \frac{1}{\sqrt{5}\cdot d\,^2}\ >\ \frac{1}{c\cdot d}\ =\ \frac{a}{c}-\frac{b}{d}\ =\ \left|\mathit{Span}\left(\frac{a}{c},\frac{b}{d}\right)\right|}


Thus


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{b}{d}+\frac{1}{\sqrt{5}\cdot d\,^2}\ >\ \frac{a}{c}-\frac{1}{\sqrt{5}\cdot c^2}}


which means that

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathit{Span}\left(\frac{a}{c},\frac{a}{c}-\frac{1}{\sqrt{5}\cdot c^2}\right)\ \cup\ \mathit{Span}\left(\frac{b}{d}+\frac{1}{\sqrt{5}\cdot d\,^2},\frac{b}{d}\right)\ \supseteq\ \mathit{Span}\left(\frac{a}{c},\frac{b}{d}\right)}


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \supseteq\ \mathit{Span}\left(\frac{A}{C},\frac{b}{d}\right)}

Thus lemma 2 is proven when the first inequality of lemma 1 holds. By replacing in the above proof the lower case  Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ a,c,}   by the upper case  Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ A,C,}   we obtain the proof when the second inequality of lemma 1 holds.

End of proof (of lemma 2)

Lemma 2'

Let  Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ a,b\in\mathbb{Z}}   and  Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ c,d\in\mathbb{N}.}   Let  Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ A:=a+b}   and  Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ C:=c+d.}   Furthermore, let fractions  Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{a}{c},\frac{b}{d},}   be neighbors, and let:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{a}{c}\ >\ x\ >\ \frac{A}{C}}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x}   is real. Then one of the following three inequalities holds:

  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0\ <\ x - \frac{b}{d}\ <\ \frac{1}{\sqrt{5}\cdot d\,^2}}


  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0\ <\ x-\frac{A}{C} <\ \frac{1}{\sqrt{5}\cdot C^2}}


  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0\ <\ \frac{a}{c}\ <\ \frac{1}{\sqrt{5}\cdot x^2}}


Proof  It's similar to the proof of lemma 2. Or one may apply lemma 2 to  Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x':=-x,\ a':=-b,\ b':=-a,}   and  Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ c':=d,\ d':=c} , which would provide us with the respective fraction  Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{s'}{t'}.}   Then the required  Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ s,t,}   are given by  Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s:=-s',\ t:=t'.}

End of proof (of lemma 2')

 

Proof of Hurwitz theorem

When    is irrational, then it is squeezed between infinitely many different pairs of neighbors (see part two of the theorem from the First results section). They provide infinitely many different required fractions  Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{s}{t}}   (see lemma 2 and 2' above; but it is not claimed, nor true, that different pairs of neighbors provide different required fractions).

End of proof

 

Squeezing irrational numbers between neighbors

Let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x > 0}   be an irrational number, We may always squeeze it between the extremal neighbours:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{0}\ >\ x\ >\ \frac{0}{1}}

But if you don't like infinity (on the left above) then you may do one of the two things:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x > 1\quad\quad\Rightarrow\quad\quad\frac{n+1}{1} > x > \frac{n}{1}}

or

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x < 1\quad\quad\Rightarrow\quad\quad\frac{1}{n} > x > \frac{1}{n+1}}


where in each of these two cases    is a respective unique positive integer.

It was mentioned in the previous section (First results) that if fractions Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{a}{c}}   and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{b}{d},}   with positive (or non-negative) integer numerators and denominators are neighbors then also the top and the bottom (bot  for short) pair:

  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathit{top}\!\left(\frac{a}{c},\frac{b}{d}\right)\ :=\ \left(\frac{a}{c},\frac{a+b}{b+d}\right)}

and

  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathit{bot}\!\left(\frac{a}{c},\frac{b}{d}\right)\ :=\ \left(\frac{a+b}{c+d},\frac{b}{d}\right)}


are both pairs of neighbors.

Let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ A_0}   be a pair of neighbors, and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x\in \mathit{Span}(A_0)} be an irrational number. Assume that pairs of neighbors Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ A_0,\dots,A_{n-1}}   are already defined, and that they squeeze Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x,} i.e. that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x\in\mathit{Span}(A_k)}   for each Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ k=0,\dots,n-1.}   Then we define Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ A_n}   as the one of the two pairs: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \mathit{top}(A_{n-1})}  or  Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \mathit{bot}(A_{n-1}),}  which squeezes Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x.}   Thus for every positive irrational number we have obtained an infinite sequence of pairs of neighbors, each squeezing the given irrational number more and more. Thus for arbitrary irrational Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x}   there exist fractions of integers Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \frac{s}{t},}   with arbitrarily large denominators, such that

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left|x - \frac{s}{t}\right|\ <\ \frac{1}{\sqrt{5}\cdot t^2}}

(see section Hurwitz theorem).

If cases top-top and bot-bot happen only finitely many times then starting with an Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ n}   we get an infinite alternating top-bot-top-bot-... sequence:


Then the new neighbor of the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ A_{n+k}}   pair (i.e. the median of the previous pair Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ A_{n+k-1}} )  is equal to

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e_{k}\ :=\ \frac{F_{k+1}\cdot a + F_{k}\cdot b}{F_{k+1}\cdot c + F_{k}\cdot d}}

for every Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ k=1,2,\dots,}   where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ F_{t}}   are the Fibonacci numbers, where

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\frac{a}{c},\frac{b}{d}\right)\ :=\ A_n}

It is known that

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{k\rightarrow\infty}\frac{F_{k+1}}{F_k}\ =\ \Phi\ :=\ \frac{\sqrt{5}+1}{2}}

hence

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x\ =\ \lim_{k\rightarrow\infty}e_k\ =\ \frac{\Phi\cdot a+b}{\Phi\cdot c+d}}


But if our infinite alternation has started with bot :

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A_{n+1} = \mathit{bot}(A_n),\quad A_{n+2} = \mathit{top}(A_{n+2}),\quad A_{n+3} = \mathit{bot}(A_{n+1})\quad\dots}

Then we would have

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x\ =\ \lim_{k\rightarrow\infty}e_k\ =\ \frac{a+\Phi\cdot b}{c+\Phi\cdot d}}

 

Another proof of Hurwitz Theorem (further insight)

Reduction to x > 0

Since

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left|(-x)-\frac{-s}{t}\right|\ =\ \left|x-\frac{s}{t}\right|}

it is enough to prove Hurwitz theorem for positive irrational numbers only.

Two cases

Consider the sequence Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \left(A_n\right)}   of pairs of neighbors, which squeeze Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x>0,}   from the previous section. The case of the infinite alternation top-bot-top-bot-... has been proved already. In the remaining case the bot-bot-top or top-top-bot progressions appear infinitely many times, i.e. there are infinitely many non-negative integers Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ n}   for which

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{a}{c}\ >\ \frac{a+b}{c+d}\ >\ \frac{a+2\cdot b}{c+2\cdot d}\ >\ x\ >\ \frac{a+3\cdot b}{c+3\cdot d}\ >\ \frac{b}{d}}

or


holds, where

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\frac{a}{c},\frac{b}{d}\right)\ :=\ A_n}

 

The top-top-bot case

Let's consider the latter top-top-bot case. Let  Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \xi := \frac{d}{c}.}   The squeeze by neighbors:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{a}{c}\ >\ x\ >\ \frac{2\cdot a+b}{2\cdot c+d}}

shows that

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0\ <\ \frac{a}{c}-x\ <\ \frac{1}{c\cdot(2\cdot c+d)}\ =\ \frac{1}{(2+\xi)}\cdot\frac{1}{c^2}}

This inequality provides the first insight (otherwise, we are not going to use it), so it deserves to be written cleanly as an implication:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0\ <\ \frac{a}{c}-x\ <\ \frac{1}{(2+\xi)}\cdot\frac{1}{c^2}\quad\quad \Leftarrow\quad\quad\frac{a}{c}\ >\ x\ >\ \frac{2\cdot a+b}{2\cdot c+d}}

The relevant neighborhoods

Consider the next two pairs of neighbors, pair Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ A_{n+4}}   and pair Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ A_{n+5},}   which squeeze Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x.}   The relevant neighborhoods are:

  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A\ :=\ \mathit{Span}(\frac{a}{c},\,\frac{3\cdot a+b}{3\cdot c+d})}


  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B\ :=\ \mathit{Span}(\frac{3\cdot a+b}{3\cdot c+d},\,\frac{5\cdot a+2\cdot b}{5\cdot c+2\cdot d})}


  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C\ :=\ \mathit{Span}(\frac{5\cdot a+2\cdot b}{5\cdot c+2\cdot d},\,\frac{7\cdot a+3\cdot b}{7\cdot c+3\cdot d})}


  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle D\ :=\ \mathit{Span}(\frac{7\cdot a+3\cdot b}{7\cdot c+3\cdot d},\,\frac{2\cdot a+b}{2\cdot c+d})}

 

Neighborhood B

Let  Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x\in B.}   Then


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{a}{c}\ >\ \frac{3\cdot a+b}{3\cdot c+d}\ >\ x\ >\ \frac{5\cdot a+2\cdot b}{5\cdot c+2\cdot d}\ >\ \frac{2\cdot a+b}{2\cdot c+d}}

and

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0\ <\ \frac{a}{c}-x\ <\ \frac{1}{c\cdot(3\cdot c+d)}+\frac{1}{(3\cdot c+d)\cdot(5\cdot c+2\cdot d)}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\ \frac{2}{c\cdot(5\cdot c+2\cdot d)}\ =\ \frac{2}{(5+2\cdot\xi)}\cdot\frac{1}{c^2}}


Conclusion:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0\ <\ \frac{a}{c}-x\ <\ \frac{2}{5+2\cdot\xi}\cdot\frac{1}{c^2}\quad\quad\Leftarrow\quad\quad x\in B}

Neighborhood C (first C-inequality)

Let  Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x\in C.}   Then


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{a}{c}\ >\ \frac{3\cdot a+b}{3\cdot c+d}\ >\ \frac{5\cdot a+2\cdot b}{5\cdot c+2\cdot d}\ >\ x\ >\ \frac{7\cdot a+3\cdot b}{7\cdot c+3\cdot d}}


Thus using the calculation for neighborhood B also for C, we get

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0\ <\ \frac{a}{c}-x\ <\ \frac{2}{(5+2\cdot\xi)\cdot c^2}+\frac{1}{(5\cdot c+2\cdot d)\cdot(7\cdot c+3\cdot d)}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\ \frac{3}{7+3\cdot\xi}\cdot\frac{1}{c^2}}


First C-conclusion:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0\ <\ \frac{a}{c}-x\ <\ \frac{3}{7+3\cdot\xi}\cdot\frac{1}{c^2}\quad\quad\Leftarrow\quad\quad x\in C}

 

Neighborhood D

Let  Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x\in D,}   i.e.


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{7\cdot a+3\cdot b}{7\cdot c+3\cdot d}\ >\ x\ >\ \frac{2\cdot a+b}{2\cdot c+d}}


Let  Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha := 2\cdot a+b}   and   Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma := 2\cdot c+d = (2+\xi)\cdot c.}   Then


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0\ <\ x-\frac{\alpha}{\gamma}\ =\ x-\frac{2\cdot a+b}{2\cdot c+d}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle <\ \frac{1}{(7\cdot c+3\cdot d)\cdot(2\cdot c+d)}\ =\ \frac{1}{(7+3\cdot\xi)\cdot c\cdot\gamma}}


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\ \frac{2+\xi}{7+3\cdot\xi}\cdot\frac{1}{\gamma^2}}


Conclusion:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0\ <\ x-\frac{\alpha}{\gamma}\ <\ \frac{2+\xi}{7+3\cdot\xi}\cdot\frac{1}{\gamma^2}\quad\quad\Leftarrow\quad\quad x\in D}


Early yield (Hurwitz Theorem)

Let's impatiently indulge ourselves in already getting some crude results from the above hard work (:-). The above three BCD-conclusions instantly imply:

  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0\ <\ \frac{a}{c}-x\ <\ \frac{2}{5}\cdot\frac{1}{c^2}\quad\quad\Leftarrow\quad\quad x\in B}


  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0\ <\ \frac{a}{c}-x\ <\ \frac{3}{7}\cdot\frac{1}{c^2}\quad\quad\Leftarrow\quad\quad x\in C}


  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0\ <\ x-\frac{\alpha}{\gamma}\ <\ \frac{2}{7}\cdot\frac{1}{\gamma^2}\quad\quad\Leftarrow\quad\quad x\in D}


Since

each occurrence of the top-top-bot subsequence, i.e. of equalities:


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A_{n+1} = \mathit{top}(A_n),\quad A_{n+2} = \mathit{top}(A_{n+1}),\quad A_{n+3} = \mathit{bot}(A_{n+2})\quad\dots}

provides a fraction  Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{s}{t}\in \mathit{Span}(A_{n+3}),}   with integer numerator and natural denominator, such that

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left|x-\frac{s}{t}\right|\ <\ \frac{3}{7}\cdot\frac{1}{t^2}\ <\ \frac{1}{\sqrt{5}}\cdot\frac{1}{t^2}}


The same is holds for every occurrence of the bot-bot-top sequence, which can be shown now mechanically by a proof similar to the proof of the top-top-bot case, or as follows: define the squeezing sequence of  Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ -x}   by:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_n := (\frac{-b}{d},\frac{-a}{c})}     for     Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A_n = (\frac{a}{c},\frac{b}{d})}


Let  Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(A_n,A_{n+1},A_{n+2},A_{n+3}\right)}   be a bot-bot-top progression. Then  Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(B_n,B_{n+1},B_{n+2},B_{n+3}\right)}   is a top-top-bot progression which squeezes  Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ -x.} Thus


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left|(-x)-\frac{u}{w}\right|\ <\ \frac{3}{7}\cdot\frac{1}{w^2}\ <\ \frac{1}{\sqrt{5}}\cdot\frac{1}{w^2}}


for certain  Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{u}{w}\in \mathit{Span}(B_{n+3}),}   with integer numerator and natural denominator. Then  Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{s}{t}\in\mathit{Span}(A_{n+3}),}   for  Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ (s,t):=(-u,w),}   satisfies:


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left|x-\frac{s}{t}\right|\ <\ \frac{3}{7}\cdot\frac{1}{t^2}\ <\ \frac{1}{\sqrt{5}}\cdot\frac{1}{t^2}}


When another top-top-bot or bot-bot-top progression starts with a sufficiently large index  Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ n',}   then  Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left|\mathit{Span}(A_{n'+3})\right| < \left|x-\frac{s}{t}\right|,}   which means that the respective new approximation  Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{s'}{t'}\in\mathit{Span}(A_{n'+3})}   is different. It follows that if there are infinitely many progressions top-top-bot or bot-bot-bot then there are infinitely many fractions  Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \frac{s}{t},} which satisfy the inequality above. Thus we have obtained the following version of Hurwitz theorem:


Theorem  Let  Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x\in\mathbb{R}\backslash\mathbb{Q}}   be an arbitrary irrational number. Then inequality
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left|x-\frac{s}{t}\right|\ <\ \frac{1}{\sqrt{5}}\cdot\frac{1}{t^2}}
holds for infinitely many fractions    with integer numerator and natural denominator. Furthermore, if the squeezing sequence of  Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x} does not eventually alternate top-bot-top-bot-... till infinity, i.e. if it has infinitely many top-top or bot-bot progressions, then
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left|x-\frac{s}{t}\right|\ <\ \frac{3}{7 }\cdot\frac{1}{t^2}}
holds for infinitely many fractions  Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \frac{s}{t},}   with integer numerator and natural denominator.


 

Neighborhood C (second C-inequality)

Let  Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x\in C.}   Then


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{5\cdot a+2\cdot b}{5\cdot c+2\cdot d}\ >\ x\ >\ \frac{7\cdot a+3\cdot b}{7\cdot c+3\cdot d}\ >\ \frac{2\cdot a+b}{2\cdot c+d}}


Thus, using the earlier conclusion for neighborhood Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ D}   also for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ C,}   we obtain


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0\ <\ x-\frac{\alpha}{\gamma}\ =\ x-\frac{2\cdot a+b}{2\cdot c+d}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle <\ \frac{1}{(5\cdot c+2\cdot d)\cdot(7\cdot c+3\cdot d)}\ +\ \frac{2+\xi}{(7+3\cdot\xi)\cdot \gamma^2}}


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\ \frac{1}{(5+2\cdot\xi)\cdot(7+3\cdot\xi)}\cdot\frac{1}{c^2}\ +\ \frac{2+\xi}{(7+3\cdot\xi)\cdot \gamma^2}}


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\ \frac{(2+\xi)^2}{(5+2\cdot\xi)\cdot(7+3\cdot\xi)}\cdot\frac{1}{\gamma^2}\ +\ \frac{2+\xi}{(7+3\cdot\xi)\cdot \gamma^2}}


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\ \frac{2+\xi}{5+2\cdot\xi}\cdot\frac{1}{\gamma^2}}


Second C-conclusion:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0\ <\ x-\frac{\alpha}{\gamma}\ <\ \frac{2+\xi}{5+2\cdot\xi}\cdot\frac{1}{\gamma^2}\quad\quad\Leftarrow\quad\quad x\in C}


Neigborhood C (the combined inequality)

Let:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \xi_0\ :=\ \frac{\sqrt{61}-7}{6}}

Then

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3}{7+3\cdot \xi_0}\ =\ \frac{2+\xi_0}{5+2\cdot\xi_0}\ =\ \frac{\sqrt{61}-7}{2}}


Thus for  Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \xi\ge\xi_0} :


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3}{7+3\cdot \xi}\ \le\ \frac{\sqrt{61}-7}{2}}


and for  Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \xi\le\xi_0} :


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2+\xi}{5+2\cdot\xi}\ \le\ \frac{\sqrt{61}-7}{2}}


It follows that

  • for one of the fractions  Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{s}{t}\in\left\{\frac{a}{c},\,\frac{2\cdot a+b}{2\cdot c+d}\right\}}   the following inequality holds for every  Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x\in C:}


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left|x-\frac{s}{t}\right|\ <\ \frac{\sqrt{61}-7}{2}}

(the choice of  Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{s}{t}}   depends on  Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \xi := \frac{d}{c}} ).

 

Divisibility

Definition  Integer Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ a}   is divisible by integer Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ b}   Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Leftarrow:\Rightarrow\ }   Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \exists_{c\in\mathbb{Z}}\ a=b\cdot c}

Symbolically:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b|a\ }   Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Leftarrow:\Rightarrow\ }   Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \exists_{c\in\mathbb{Z}}\ a=b\cdot c}


When Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ a}   is divisible by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ b}   then we also say that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ b}   is a divisor of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ a,}   or that   divides Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ a.}

  • The only integer divisible by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ 0}   is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ 0}   (i.e. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ 0}   is a divisor only of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ 0} ).
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0\ }   is divisible by every integer.
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1\ }   is the only positive divisor of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ 1.}
  • Every integer is divisible by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ 1}   (and by  Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ -1} ).

 

  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a|b\ \Rightarrow (-a|b\ \and\ a|\!-\!\!b)}
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a|b > 0\ \Rightarrow a\le b}

 

  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a|a\ }
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (a|b\ \and\ b|c)\ \Rightarrow\ a|c}
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (a|b\ \and\ b|a)\ \Rightarrow\ |a|=|b|}

Remark  The above three properties show that the relation of divisibility is a partial order in the set of natural number  Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{N},}   and also in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{Z}_+}Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ 1}   is its minimal, and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ 0}   is its maximal element.

  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (a|b\ \and\ a|c)\ \Rightarrow\ (a\,|\,b\!\cdot\!d\ \and\ a\,|\,b\!+\!c\ \and\ a\,|\,b\!-\!c)}

 

Relatively prime pairs of integers

Definition  Integers Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ a}   and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ b}   are relatively prime   Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Leftarrow:\Rightarrow\ }   Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ 1}   is their only common positive divisor.

  • Integers Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x}   and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ 0}   are relatively prime   Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Leftrightarrow\ |x| = 1.}
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1\ }   is relatively prime with every integer.
  • If Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ a}   and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ b}   are relatively prime then also Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ a}   and  Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ -b}   are relatively prime.


Theorem 1  If Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ a,b,c \in \mathbb{Z}}   are such that two of them are relatively prime and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ a+b=c,}   then any two of them are relatively prime.
Corollary  If Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ a}   and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ b}   are relatively prime then also Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ a}   and  Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ |a-b\,|}   are relatively prime.


Now, let's define inductively a table odd integers:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (\nu_{k,n} : k\in \mathbb{Z}_+,\ 0\le n\le 2^k)}

as follows:

  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nu_{0,0} := 0\ }     and     Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nu_{0,1} :=1\ }
  •   for  Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0\le n\le 2^k\ }
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nu_{k+1,2\cdot n+1}\ :=\ \nu_{k,n}+\nu_{k,n+1}}   for  Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0\le n < 2^k\ }

for every  Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ k=0,1,\dots.}


The top of this table looks as follows:

0 1
0 1 1
0 1 1 2 1
0 1 1 2 1 3 2 3 1
0 1 1 2 1 3 1 3 1 4 3 5 2 5 3 4 1

etc.

Theorem 2
  • Every pair of neighboring elements of the table, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \nu_{k,n}}   and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \nu_{k,n+1}}   is relatively prime.
  • For every pair of relatively prime, non-negative integers Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ a}   and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ b}   there exist indices Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k\in\mathbb{Z}_+}   and non-negative Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ n<2^k}   such that:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{a,b\}\ =\ \{\nu_{k,n},\nu_{k,n+1}\}}

Proof  Of course the pair

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{\nu_{0,0},\nu_{0,1}\}\ =\ \{0,1\}}

is relatively prime; and the inductive proof of the first statement of Theorem 2 is now instant thanks to Theorem 1 above.

Now let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ a}   and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ b}   be a pair of relatively prime, non-negative integers. If Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ a+b=1}   then Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \{a, b\}=\{0,1\}=\{\nu_{0,0},\nu_{0,1}\},}   and the second part of the theorem holds. Continuing this unductive proof, let's assume that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ a+b>1.}   Then Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \min(a,b) > 0.}   Thus

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \max(a,b) < a+b}

But integers Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ c := \min(a,b)}   and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ d := |a-b|}   are relatively prime (see Corollary above), and

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c+d\ =\ max(a,b)\ <\ a+b}

hence, by induction,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{c,d\}\ =\ \{\nu_{k,n},\nu_{k,n+1}\}}

for certain indices Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k\in\mathbb{Z}_+}   and non-negative Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ n<2^k.}   Furthermore:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{a,b\}\ =\ \{\min(a,b), \max(a,b)\}}

It follows that one of the two options holds:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{a,b\}\ =\ \{\nu_{k+1,2\cdot n},\nu_{k+1,2\cdot n+1}\}}

or

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{a,b\}\ =\ \{\nu_{k+1,2\cdot n+1},\nu_{k+1,2\cdot n+2}\}}

End of proof


Let's note also, that

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \max_{\quad 0\le n \le 2^k}\nu_{k,n}\ =\ F_{k+1}}


where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ F_r}   is the r-th Fibonacci number.

Matrix monoid Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathit{SO}(\mathbb{Z}_+, 2)}

Definition 1  Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathit{SO}(\mathbb{Z}_+, 2)}   is the set of all matrices

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M\ :=\ \left[\begin{array}{cc}a & b\\ c & d\end{array}\right]}

such that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ a,b,c,d\in\mathbb{Z}_+,}   and  Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \det(M) = 1,}   where  Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \det(M) := a\cdot d - b\cdot c.}   Such matrices (and their columns and rows) will be called special.

  • If
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M\ :=\ \left[\begin{array}{cc}a & b\\ c & d\end{array}\right]\in\mathit{SO}(\mathbb{Z}_+, 2)}

then  Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ a,d > 0,}   and each of the columns and rows of M, i.e. each of the four pairs    is relatively prime.


Obviously, the identity matrix

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{I}\ :=\ \left[\begin{array}{cc}1 & 0\\ 0 & 1\end{array}\right]}

belongs to   Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathit{SO}(\mathbb{Z}_+, 2).}   Furthermore,  Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathit{SO}(\mathbb{Z}_+, 2)}   is a monoid with respect to the matrix multiplication.

Example  The upper matrix and the lower matrix are defined respectively as follows:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{U}\ :=\ \left[\begin{array}{cc}1 & 1\\ 0 & 1\end{array}\right]}   and   Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{L}\ :=\ \left[\begin{array}{cc}1 & 0\\ 1 & 1\end{array}\right]}

Obviously Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \mathcal{U},\mathcal{L}\in \mathit{SO}(\mathbb{Z}_+,2).}   When they act on the right on a matrix M (by multipliplying M by itself), then they leave respectively the left or right column of M intact:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M\cdot \mathcal{U}\ =\ \left[\begin{array}{cc}a & a+b\\ c & c+d\end{array}\right]}

and

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M\cdot \mathcal{L}\ =\ \left[\begin{array}{cc}a+b & b\\ c+d & d\end{array}\right]}


Definition 2  Vectors

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left[\begin{array}{c}a\\ c\end{array}\right]}     and     Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left[\begin{array}{c}b\\ d\end{array}\right]}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ a,b,c,d\in\mathbb{Z}_+,}   are called neighbors (in that order)   Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Leftarrow:\Rightarrow}   matrix formed by these vectors

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M\ :=\ \left[\begin{array}{cc}a & b\\ c & d\end{array}\right]}

belongs to  Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathit{SO}(\mathbb{Z}_+, 2).}   Then the left (resp. right) column is called the left (resp. right) neighbor.

Rational representation

With every vector

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v\ :=\ \left[\begin{array}{c}a\\ c\end{array}\right]}

such that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ c\ne 0,}   let's associate a rational number

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathit{rat}(v)\ :=\ \frac{a}{c}}

Also, let

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathit{rat}(v_{\infty})\ :=\ \infty}

for

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_{\infty}\ :=\ \left[\begin{array}{c}1\\ 0\end{array}\right]}

Furthermore, with every matrix  Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M\in \mathit{SO}(\mathbb{Z}_+,2),}   let's associate the real open interval

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathit{span}(M)\ :=\ (\mathit{rat}(w);\mathit{rat}(v))}

and its length

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle diam(M)\ :=\ \mathit{rat}(v)-\mathit{rat}(w)}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ v}   is the left, and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ w}   is the right column of matrix M — observe that the rational representation of the left column of a special matrix is always greater than the rational representation of the right column of the same special matrix.

  • If
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M\ :=\ \left[\begin{array}{cc}a & b\\ c & d\end{array}\right]\in\mathit{SO}(\mathbb{Z}_+, 2)}

then  Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ diam(M) = \frac{1}{c\cdot d}}