Fermat pseudoprime: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Karsten Meyer
mNo edit summary
 
(8 intermediate revisions by 3 users not shown)
Line 1: Line 1:
A composite number ''n'' is called '''Fermat pseudoprime''' to a natural base ''a'', coprime to n, so that <math>a^{n-1} \equiv 1 \pmod n</math>
{{subpages}}
 
A composite number <math>\scriptstyle q\ </math> is called a '''Fermat pseudoprime''' to a natural base <math>\scriptstyle a\ </math>, which is coprime to <math>\scriptstyle q\ </math>, if <math>\scriptstyle a^{q-1} \equiv 1 \pmod q</math>.


==Restriction==
==Restriction==


It is sufficient, that the base ''a'' satisfy <math>2 \le a \le n-2</math> because every odd number ''n'' satisfy for <math>a = n-1\ </math> that <math>a^{n-1} \equiv 1 \pmod n</math><ref>Richard E. Crandall and Carl Pomerance: Prime Numbers. A Computational Perspective. Springer Verlag , page 132, Therem 3.4.2. </ref>
It is sufficient that the base <math>\scriptstyle a\ </math> satisfies <math>\scriptstyle 2 \le a \le q-2</math> because every odd number <math>\scriptstyle q\ </math> satisfies <math>\scriptstyle a^{q-1} \equiv 1 \pmod q</math> for <math>\scriptstyle a = q-1\ </math><ref>Richard E. Crandall and Carl Pomerance: Prime Numbers: A Computational Perspective. Springer-Verlag, 2001, page 132, Theorem 3.4.2. </ref>.
If ''n'' is a Fermat pseudoprime to base ''a'', then ''n'' is a Fermat pseudoprime to base <math>b\cdot n+a</math> for every integer <math>b \ge 0</math>
 
If <math>\scriptstyle q\ </math> is a Fermat pseudoprime to base <math>\scriptstyle a\ </math> then <math>\scriptstyle q\ </math> is a Fermat pseudoprime to base <math>\scriptstyle b\cdot q+a</math> for every integer <math>\scriptstyle b \ge 0</math>.
 
== Odd Fermat pseudoprimes ==
 
To every odd Fermat pseudoprime <math>\scriptstyle q\ </math> exist an even number of bases <math>\scriptstyle a\ </math>. Every base <math>\scriptstyle a\ </math> has a cobase <math>\scriptstyle a' = q - a\ </math>.
 
Examples:
 
:15 is a Fermat pseudoprime to the bases 4 and 11
 
:49 is a Fermat pseudoprime to the bases 18, 19, 30 and 31


==Properties==
==Properties==
Most of the Pseudoprimes, like [[Euler pseudoprime]], [[Carmichael number]], [[Fibonacci pseudoprime]] and [[Lucas pseudoprime]], are Fermat pseudoprimes.
Most of the pseudoprimes, like [[Euler pseudoprime]]s, [[Carmichael number]]s, [[Fibonacci pseudoprime]]s and [[Lucas pseudoprime]]s, are Fermat pseudoprimes.


==References and notes==
==References and notes==
Line 13: Line 26:


== Further reading ==
== Further reading ==
* [[Richard E. Crandall]] and [[Carl Pomerance]]: Prime Numbers. A Computational Perspective. Springer Verlag, ISBN 0-387-25282-7  
* [[Richard E. Crandall]] and [[Carl Pomerance]]: Prime Numbers: A Computational Perspective. Springer-Verlag, 2001, ISBN 0-387-25282-7  
* [[Paolo Ribenboim]]: The New Book of Prime Number Records. Springer Verlag, 1996, ISBN 0-387-94457-5
* [[Paulo Ribenboim]]: The New Book of Prime Number Records. Springer-Verlag, 1996, ISBN 0-387-94457-5


[[Category:Mathematics Workgroup]]
==Links==
* [http://de.wikibooks.org/wiki/Pseudoprimzahlen:_Tabelle_Pseudoprimzahlen_(15_-_4999) Table of the Fermat pseudoprimes between 15 and 4997][[Category:Suggestion Bot Tag]]

Latest revision as of 06:00, 16 August 2024

This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
Code [?]
 
This editable Main Article is under development and subject to a disclaimer.

A composite number is called a Fermat pseudoprime to a natural base , which is coprime to , if .

Restriction

It is sufficient that the base satisfies because every odd number satisfies for [1].

If is a Fermat pseudoprime to base then is a Fermat pseudoprime to base for every integer .

Odd Fermat pseudoprimes

To every odd Fermat pseudoprime exist an even number of bases . Every base has a cobase .

Examples:

15 is a Fermat pseudoprime to the bases 4 and 11
49 is a Fermat pseudoprime to the bases 18, 19, 30 and 31

Properties

Most of the pseudoprimes, like Euler pseudoprimes, Carmichael numbers, Fibonacci pseudoprimes and Lucas pseudoprimes, are Fermat pseudoprimes.

References and notes

  1. Richard E. Crandall and Carl Pomerance: Prime Numbers: A Computational Perspective. Springer-Verlag, 2001, page 132, Theorem 3.4.2.

Further reading

Links