Euler pseudoprime: Difference between revisions
Jump to navigation
Jump to search
imported>Hendra I. Nurdin |
mNo edit summary |
||
(3 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
{{subpages}} | {{subpages}} | ||
A composite number ''n'' is called an '''Euler pseudoprime''' to a natural base ''a'' if <math>\scriptstyle a^{\frac {n-1}{2}} \equiv 1 \pmod n</math> or <math>\scriptstyle a^{\frac {n-1}{2}} \equiv \left( -1\right) \pmod n</math> | A composite number ''n'' is called an '''Euler pseudoprime''' to a natural base ''a'' if <math>\scriptstyle a^{\frac {n-1}{2}} \equiv 1 \pmod n</math> or <math>\scriptstyle a^{\frac {n-1}{2}} \equiv \left( -1\right) \pmod n</math> | ||
Line 10: | Line 9: | ||
::<math>1^2 = \left( -1\right) ^2 = 1\ </math> | ::<math>1^2 = \left( -1\right) ^2 = 1\ </math> | ||
*Every Euler Pseudoprime to base ''a'' that satisfies <math>\scriptstyle a^{\frac{n-1}{2}}\equiv\left(\frac an\right)\pmod n</math> is an [[Euler-Jacobi pseudoprime]]. | *Every Euler Pseudoprime to base ''a'' that satisfies <math>\scriptstyle a^{\frac{n-1}{2}}\equiv\left(\frac an\right)\pmod n</math> is an [[Euler-Jacobi pseudoprime]]. | ||
* | *[[strong pseudoprime|Strong pseudoprimes]] are Euler pseudoprimes too. | ||
== Absolute Euler pseudoprime == | == Absolute Euler pseudoprime == | ||
Line 17: | Line 16: | ||
== Further reading == | == Further reading == | ||
* [[Richard E. Crandall]] and [[Carl Pomerance]]. Prime Numbers: A Computational Perspective. Springer-Verlag, 2001, ISBN 0-387-25282-7 | * [[Richard E. Crandall]] and [[Carl Pomerance]]. Prime Numbers: A Computational Perspective. Springer-Verlag, 2001, ISBN 0-387-25282-7 | ||
* [[ | * [[Paulo Ribenboim]]. The New Book of Prime Number Records. Springer-Verlag, 1996, ISBN 0-387-94457-5[[Category:Suggestion Bot Tag]] | ||
[[Category: | |||
Latest revision as of 06:00, 14 August 2024
A composite number n is called an Euler pseudoprime to a natural base a if or
Properties
- Every Euler pseudoprime is odd.
- Every Euler pseudoprime is also a Fermat pseudoprime:
- and
- Every Euler Pseudoprime to base a that satisfies is an Euler-Jacobi pseudoprime.
- Strong pseudoprimes are Euler pseudoprimes too.
Absolute Euler pseudoprime
An absolute Euler pseudoprime is a composite number c that satisfies the congruence or for every base a that is coprime to c. Every absolute Euler pseudoprime is also a Carmichael number.
Further reading
- Richard E. Crandall and Carl Pomerance. Prime Numbers: A Computational Perspective. Springer-Verlag, 2001, ISBN 0-387-25282-7
- Paulo Ribenboim. The New Book of Prime Number Records. Springer-Verlag, 1996, ISBN 0-387-94457-5