Euler pseudoprime: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Richard Pinch
(→‎Properties: corrected statement on Carmichael numbers)
mNo edit summary
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{subpages}}
{{subpages}}
A composite number ''n'' is called an '''Euler pseudoprime''' to a natural base ''a'' if <math>\scriptstyle a^{\frac {n-1}{2}} \equiv 1 \pmod n</math> or <math>\scriptstyle a^{\frac {n-1}{2}} \equiv \left( -1\right) \pmod n</math>
A composite number ''n'' is called an '''Euler pseudoprime''' to a natural base ''a'' if <math>\scriptstyle a^{\frac {n-1}{2}} \equiv 1 \pmod n</math> or <math>\scriptstyle a^{\frac {n-1}{2}} \equiv \left( -1\right) \pmod n</math>


Line 17: Line 16:
== Further reading ==
== Further reading ==
* [[Richard E. Crandall]] and [[Carl Pomerance]]. Prime Numbers: A Computational Perspective. Springer-Verlag, 2001, ISBN 0-387-25282-7  
* [[Richard E. Crandall]] and [[Carl Pomerance]]. Prime Numbers: A Computational Perspective. Springer-Verlag, 2001, ISBN 0-387-25282-7  
* [[Paolo Ribenboim]]. The New Book of Prime Number Records. Springer-Verlag, 1996, ISBN 0-387-94457-5
* [[Paulo Ribenboim]]. The New Book of Prime Number Records. Springer-Verlag, 1996, ISBN 0-387-94457-5[[Category:Suggestion Bot Tag]]
 
[[Category:Mathematics Workgroup]]
[[Category:Stub Articles]]
[[Category:CZ Live]]

Latest revision as of 06:00, 14 August 2024

This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
Code [?]
 
This editable Main Article is under development and subject to a disclaimer.

A composite number n is called an Euler pseudoprime to a natural base a if or

Properties

and
  • Every Euler Pseudoprime to base a that satisfies is an Euler-Jacobi pseudoprime.
  • Strong pseudoprimes are Euler pseudoprimes too.

Absolute Euler pseudoprime

An absolute Euler pseudoprime is a composite number c that satisfies the congruence or for every base a that is coprime to c. Every absolute Euler pseudoprime is also a Carmichael number.

Further reading