Fermat pseudoprime: Difference between revisions
Jump to navigation
Jump to search
imported>Hendra I. Nurdin m (copy-edit) |
mNo edit summary |
||
(3 intermediate revisions by one other user not shown) | |||
Line 7: | Line 7: | ||
It is sufficient that the base <math>\scriptstyle a\ </math> satisfies <math>\scriptstyle 2 \le a \le q-2</math> because every odd number <math>\scriptstyle q\ </math> satisfies <math>\scriptstyle a^{q-1} \equiv 1 \pmod q</math> for <math>\scriptstyle a = q-1\ </math><ref>Richard E. Crandall and Carl Pomerance: Prime Numbers: A Computational Perspective. Springer-Verlag, 2001, page 132, Theorem 3.4.2. </ref>. | It is sufficient that the base <math>\scriptstyle a\ </math> satisfies <math>\scriptstyle 2 \le a \le q-2</math> because every odd number <math>\scriptstyle q\ </math> satisfies <math>\scriptstyle a^{q-1} \equiv 1 \pmod q</math> for <math>\scriptstyle a = q-1\ </math><ref>Richard E. Crandall and Carl Pomerance: Prime Numbers: A Computational Perspective. Springer-Verlag, 2001, page 132, Theorem 3.4.2. </ref>. | ||
If <math>\scriptstyle q\ </math> is a Fermat pseudoprime to base <math>\scriptstyle a\ </math> then <math>\scriptstyle | If <math>\scriptstyle q\ </math> is a Fermat pseudoprime to base <math>\scriptstyle a\ </math> then <math>\scriptstyle q\ </math> is a Fermat pseudoprime to base <math>\scriptstyle b\cdot q+a</math> for every integer <math>\scriptstyle b \ge 0</math>. | ||
== Odd Fermat pseudoprimes == | == Odd Fermat pseudoprimes == | ||
Line 15: | Line 15: | ||
Examples: | Examples: | ||
:15 is a Fermat pseudoprime to the bases 4 and | :15 is a Fermat pseudoprime to the bases 4 and 11 | ||
:49 is a Fermat pseudoprime to the bases 18, 19, 30 and 31 | :49 is a Fermat pseudoprime to the bases 18, 19, 30 and 31 | ||
Line 27: | Line 27: | ||
== Further reading == | == Further reading == | ||
* [[Richard E. Crandall]] and [[Carl Pomerance]]: Prime Numbers: A Computational Perspective. Springer-Verlag, 2001, ISBN 0-387-25282-7 | * [[Richard E. Crandall]] and [[Carl Pomerance]]: Prime Numbers: A Computational Perspective. Springer-Verlag, 2001, ISBN 0-387-25282-7 | ||
* [[ | * [[Paulo Ribenboim]]: The New Book of Prime Number Records. Springer-Verlag, 1996, ISBN 0-387-94457-5 | ||
==Links== | ==Links== | ||
* [http://de.wikibooks.org/wiki/Pseudoprimzahlen:_Tabelle_Pseudoprimzahlen_(15_-_4999) Table of the Fermat pseudoprimes between 15 and 4997] | * [http://de.wikibooks.org/wiki/Pseudoprimzahlen:_Tabelle_Pseudoprimzahlen_(15_-_4999) Table of the Fermat pseudoprimes between 15 and 4997][[Category:Suggestion Bot Tag]] |
Latest revision as of 06:00, 16 August 2024
A composite number is called a Fermat pseudoprime to a natural base , which is coprime to , if .
Restriction
It is sufficient that the base satisfies because every odd number satisfies for [1].
If is a Fermat pseudoprime to base then is a Fermat pseudoprime to base for every integer .
Odd Fermat pseudoprimes
To every odd Fermat pseudoprime exist an even number of bases . Every base has a cobase .
Examples:
- 15 is a Fermat pseudoprime to the bases 4 and 11
- 49 is a Fermat pseudoprime to the bases 18, 19, 30 and 31
Properties
Most of the pseudoprimes, like Euler pseudoprimes, Carmichael numbers, Fibonacci pseudoprimes and Lucas pseudoprimes, are Fermat pseudoprimes.
References and notes
- ↑ Richard E. Crandall and Carl Pomerance: Prime Numbers: A Computational Perspective. Springer-Verlag, 2001, page 132, Theorem 3.4.2.
Further reading
- Richard E. Crandall and Carl Pomerance: Prime Numbers: A Computational Perspective. Springer-Verlag, 2001, ISBN 0-387-25282-7
- Paulo Ribenboim: The New Book of Prime Number Records. Springer-Verlag, 1996, ISBN 0-387-94457-5