Cytoskeleton: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>David Tribe
No edit summary
 
mNo edit summary
 
(34 intermediate revisions by 10 users not shown)
Line 1: Line 1:
[[Image:FluorescentCells.jpg|thumb|right|300px|The eukaryotic cytoskeleton. Actin filaments are shown in red, microtubules in green, and the nuclei are in blue.]]The '''cytoskeleton''' is a cellular "[[scaffolding]]" or "[[skeleton]]" contained, as all other [[organelle]]s, within the [[cytoplasm]]. It is contained in all [[eukaryotic]] cells and recent research has shown it can be present in [[prokaryotic]] cells too. It is a dynamic structure that maintains cell shape, enables some cell motion (using structures such as [[flagellum|flagella]] and [[cilium|cilia]]), and plays important roles in both intra-cellular transport (the movement of [[vesicle (biology)|vesicle]]s and organelles, for example) and cellular division.
{{subpages}}


==The eukaryotic cytoskeleton==
The '''cytoskeleton''' is a structural "[[scaffold]]" or "[[skeleton]]" that is present inside all [[eukaryotic]] cells. This dynamic, three dimensional structure fills the cytoplasms of cells; it maintains their shape, and enables them to move, using structures such as [[flagellum|flagella]] and [[cilium|cilia]]. It also has important roles in the intracellular transport of [[vesicle (biology)|vesicle]]s and organelles) and in cell division.
 
==Eukaryotic cells==
[[Image:MEF_microfilaments.jpg|thumb|right|200px|Actin cytoskeleton of [[mus_musculus|mouse]] [[embryo]] [[fibroblast]]s, stained with [[phalloidin]]]]
[[Image:MEF_microfilaments.jpg|thumb|right|200px|Actin cytoskeleton of [[mus_musculus|mouse]] [[embryo]] [[fibroblast]]s, stained with [[phalloidin]]]]
[[Eukaryotic]] cells contain three kinds of cytoskeletal filaments.
[[Eukaryotic]] cells contain three kinds of cytoskeletal filaments:
 
===Actin filaments===
''Main article: [[actin]].''
 
Around 7 nm in diameter, this filament is composed of two actin chains oriented in an helicoidal shape. They are mostly concentrated just beneath the plasma membrane, as they keep cellular shape, form cytoplasmatic protuberances (like [[pseudopod|pseudopodia]] and [[microvillus|
microvilli]]), and participate in some cell-to-cell or cell-to-matrix junctions and in the [[transduction]] of signals. They are also important for [[cytokinesis]] and, along with [[myosin]], [[Skeletal muscle|muscular contraction]].
 
===Intermediate filaments===
[[Image:KeratinF9.png|thumb|right|200px|Microscopy of keratin filaments inside cells.]]
''Main article: [[intermediate filament]]s''
 
These filaments, 8 to 11 nanometers in diameter, are the more stable (strongly bound) and heterogeneous constituents of the cytoskeleton.
They organize the internal tridimensional structure of the cell (they are structural components of the [[nuclear envelope]] or the [[sarcomere]]s for example). They also participate in some cell-cell and cell-matrix junctions.
 
Different intermediate filaments are:
*made of [[vimentin]]s, being the common structural support of many cells.
*made of [[keratin]], found in [[skin]] cells, [[hair]] and [[nails]].
*[[neurofilament]]s of neural cells.
*made of [[lamin]], giving structural support to the nuclear envelope.
 
===Microtubules===
[[Image:Microtutubules_gel_fixated.jpg|thumb|right|200px|Microtubules in a gel fixated cell.]]
[[Image:Animal cell structure.svg|thumb|300px]]
''Main article: [[microtubule]]s''
 
They are hollow cylinders of about 25 nm, formed by 13 protofilaments which, in turn, are polymers of alpha and beta [[tubulin]]. They have a very dynamic behaviour, binding [[Guanosine triphosphate|GTP]] for polymerization. They are organized by the [[centrosome]].
 
They play key roles in:
*intracellular transport (associated with [[dynein]]s and [[kinesin]]s they transport [[organelles]] like [[mitochondria]] or [[vesicle (biology)|vesicle]]s).
*the [[axoneme]] of [[cilium|cilia]] and [[flagellum|flagella]].
*the [[mitotic spindle]].
*synthesis of the cell wall in plants.
 
 
A fourth eukaryotic cytoskeletal element, ''microtrabeculae'', were proposed by Keith Porter in the 1960s. Porter's lab observed short, filamentous structures of unknown molecular composition in electron micrographs of whole cells.  Due to their filamentous appearance and association with known cytoplasmic structures, microtrabeculae were speculated to represent a novel filamentous network distinct from microtubules, filamentous actin, or intermediate filaments.  However, they were later shown to be an artifact of certain types of fixation treatments by Hans Ris and others.
 
==The prokaryotic cytoskeleton==
 
The cytoskeleton was previously thought to be a feature only of [[eukaryote|eukaryotic]] cells, but [[homology (biology)|homologues]] to all the major proteins of the eukaryotic cytoskeleton have recently been found in [[prokaryotes]]. Although the evolutionary relationships are so distant that they are not obvious from protein sequence comparisons alone, the similarity of their three-dimensional [[protein structure|structures]] provides strong evidence that the eukaryotic and prokaryotic cytoskeletons are truly homologous.
 
===FtsZ===
 
[[FtsZ]], a  was the first protein of the prokaryotic cytoskeleton to be identified. Like tubulin, FtsZ forms filaments in the presence of [[Guanosine triphosphate|GTP]], but these filaments do not group into tubules. During [[cell division]], FtsZ is the first protein to move to the division site, and is essential for recruiting other proteins that produce a new [[cell wall]] between the dividing cells.


*'''Microfilaments''', which are about 7 nm in diameter, are composed of two [[actin]] chains oriented in an helicoidal shape. Actin is a contractile protein, and is the most abundant protein in cells. In muscle cells, the association of microfilaments with another protein, [[myosin]], is responsible for muscle contraction. Microfilaments can also carry out cellular movements including gliding, contraction, and cytokinesis.  They are mostly concentrated just beneath the plasma membrane, as they keep cellular shape, form cytoplasmatic protuberances (like [[pseudopod|pseudopodia]] and [[microvillus|
microvilli]]), and participate in some cell-to-cell or cell-to-matrix junctions and in the [[transduction]] of signals.


Scientist's Carl Linane and James Tennyson have recently made major progress while studying these structures and a presentation will be done regarding this in SPHS Discusion Grounds.
*'''[[Intermediate filament]]s''',  8-11 nanometers in diameter, are the more stable (strongly bound) and heterogeneous constituents of the cytoskeleton; they provide the tensile strength of a cell, and determine its internal structure; for example, they are structural components of the [[nuclear envelope]] and of the [[sarcomere]]s. They also participate in some cell-cell and cell-matrix junctions. Many intermediate filaments are made of [[vimentin]]s. Others, in cells of the [[skin]]  [[hair]] and [[nails]], are made of [[keratin]]. Some filaments, made of [[laminin]], give structural support to the nuclear envelope.<ref>Zhong Z ''et al.'' (2010) Beyond lamins other structural components of the nucleoskeleton ''Methods Cell Biol'' 98:97-119 PMID 20816232</ref>


===MreB and ParM===
*'''[[Microtubule]]s''' are hollow cylinders of about 25 nm in diameter, formed by 13 protofilaments which are polymers of alpha and beta [[tubulin]]. Microtubules act as a scaffold to determine cell shape, and they provide "tracks" which cell organelles and vesicles move along. Microtubules also form the spindle fibers for separating chromosomes during mitosis. When arranged in geometric patterns inside flagella and cilia, they are used for locomotion. They have a very dynamic behaviour, binding [[Guanosine triphosphate|GTP]] for polymerization. They are organized by the [[centrosome]]. <ref>Bereiter-Hahn J, Jendrach M (2010)
Mitochondrial dynamics ''Int Rev Cell Mol Biol'' 284:1-65. PMID 20875628</ref>


Prokaryotic actin-like proteins, such as [[MreB]], are involved in the maintenance of cell shape. All non-spherical bacteria have [[gene]]s encoding actin-like proteins, and these proteins form a helical network beneath the cell membrane that guides the proteins involved in cell wall [[biosynthesis]].
In, for example, epithelial (skin) cells of the intestine, microfilaments that project into the [[villus|villi]], give shape to the cell surface; microtubules project from the centrosome to the cell periphery; and intermediate filaments connect adjacent cells through [[desmosome]]s.


Some [[plasmid]]s encode a partitioning system that involves an actin-like protein [[ParM]]. Filaments of ParM exhibit [[dynamic instability]], and may partition plasmid DNA into the dividing daughter cells by a mechanism [[Analogy (biology)|analogous]] to that used by microtubules during eukaryotic [[mitosis]].
The cytoskeleton of  mammalian [[Sertoli cell]]s is one of the most elaborate that has been described. Actin filaments, vimentin-type intermediate filaments and microtubules all have distinct patterns of distribution that change during [[spermatogenesis]]. Actin filaments are concentrated in ectoplasmic specializations that are involved in intercellular adhesion, and at complexes involved with junction internalization during sperm release and movement of spermatocytes between neighbouring Sertoli cells. Intermediate filaments are in a perinuclear network which has peripheral extensions to desmosome-like junctions with adjacent cells and to small attachments to the basal lamina, and are thought to have a role in maintaining tissue integrity when the epithelium is mechanically stressed. Microtubules are involved in maintaining the columnar shape of Sertoli cells, with transporting organelles in the cytoplasm, with secreting seminiferous tubule fluid, and in intercellular communication. <ref>Vogl AW ''et al.'' (2008) The Sertoli cell cytoskeleton ''Adv Exp Med Biol'' 636:186-211 PMID 19856169</ref>


===Crescentin===
==Prokaryote cells==
The cytoskeleton was once believed to be a feature only of [[eukaryote|eukaryotic]] cells, but [[homology (biology)|homologues]] of the major proteins of the eukaryotic cytoskeleton have been found in [[prokaryotes]].<ref>{{cite journal |author=Shih YL, Rothfield L |title=The bacterial cytoskeleton |journal=Microbiol Mol Biol Rev|volume=70 |pages=729–54 |year=2006 |pmid=16959967}}</ref> <ref>{{cite journal |author=Michie KA, Löwe J |title=Dynamic filaments of the bacterial cytoskeleton |journal=Annu Rev Biochem |volume=75  |pages=467–92 |year=2006 |pmid=16756499 }}</ref>Cabeen MT, Jacobs-Wagner C (2010) The bacterial cytoskeleton ''Annu Rev Genet'' 44:365-92</ref>
[[FtsZ]] was the first of these to be identified. Like tubulin, FtsZ forms filaments in the presence of [[Guanosine triphosphate|GTP]], but these filaments do not group into tubules. During [[cell division]], FtsZ is the first protein to move to the division site, and is essential for recruiting other proteins that produce a new [[cell wall]] between the dividing cells.


The bacterium [[Caulobacter crescentus]] contains a third protein, [[crescentin]], that is related to the intermediate filaments of eukaryotic cells. Crescentin is also involved in maintaining cell shape, but the mechanism by which it does this is currently unclear.
Prokaryotic actin-like proteins, such as [[MreB]], are involved in maintaining cell shape. All non-spherical bacteria have [[gene]]s that encode actin-like proteins; these proteins form a helical network beneath the cell membrane that guides the proteins involved in cell wall [[biosynthesis]].


==Further reading==
Some [[plasmid]]s encode a partitioning system that involves an actin-like protein [[ParM]]. Filaments of ParM exhibit [[dynamic instability]], and may partition plasmid DNA into the dividing daughter cells by a mechanism [[Analogy (biology)|like]] that used by microtubules during eukaryotic [[mitosis]].
*Linda A. Amos and W. Gradshaw Amos, ''Molecules of the Cytoskeletion'', Guilford, ISBN 0-89862-404-5, LoC QP552.C96A46 1991


==External links==
The bacterium ''[[Caulobacter crescentus]]'' expresses a protein, [[crescentin]], that is related to the intermediate filaments of eukaryotic cells. Crescentin is also involved in maintaining cell shape, but how it does this is unclear.
*[http://www.biochemweb.org/cytoskeleton.shtml Cytoskeleton, Cell Motility and Motors - The Virtual Library of Biochemistry and Cell Biology]
*[http://www.cytoskeletons.com Cytoskeleton database, clinical trials, recent literature, lab registry ...]
{{Template:Cytoskeletal Proteins}}
[[Category:Organelles]]
[[Category:Cytoskeleton]]
[[Category:CZ Live]]


[[bn:সাইটোকঙ্কাল]]
==References==
[[cs:Cytoskelet]]
<references/>[[Category:Suggestion Bot Tag]]
[[de:Cytoskelett]]
[[fr:Cytosquelette]]
[[ko:세포골격]]
[[hr:Citoskeleton]]
[[is:Frymisnet]]
[[it:Citoscheletro]]
[[he:שלד התא]]
[[lb:Zytoskelett]]
[[lt:Citoskeletas]]
[[nl:Cytoskelet]]
[[ja:細胞骨格]]
[[pl:Cytoszkielet]]
[[ru:Цитоскелет]]
[[sr:Ћелијски скелет]]
[[sv:Cellskelett]]
[[zh:细胞骨架]]

Latest revision as of 07:00, 4 August 2024

This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

The cytoskeleton is a structural "scaffold" or "skeleton" that is present inside all eukaryotic cells. This dynamic, three dimensional structure fills the cytoplasms of cells; it maintains their shape, and enables them to move, using structures such as flagella and cilia. It also has important roles in the intracellular transport of vesicles and organelles) and in cell division.

Eukaryotic cells

Actin cytoskeleton of mouse embryo fibroblasts, stained with phalloidin

Eukaryotic cells contain three kinds of cytoskeletal filaments:

  • Microfilaments, which are about 7 nm in diameter, are composed of two actin chains oriented in an helicoidal shape. Actin is a contractile protein, and is the most abundant protein in cells. In muscle cells, the association of microfilaments with another protein, myosin, is responsible for muscle contraction. Microfilaments can also carry out cellular movements including gliding, contraction, and cytokinesis. They are mostly concentrated just beneath the plasma membrane, as they keep cellular shape, form cytoplasmatic protuberances (like pseudopodia and microvilli), and participate in some cell-to-cell or cell-to-matrix junctions and in the transduction of signals.
  • Intermediate filaments, 8-11 nanometers in diameter, are the more stable (strongly bound) and heterogeneous constituents of the cytoskeleton; they provide the tensile strength of a cell, and determine its internal structure; for example, they are structural components of the nuclear envelope and of the sarcomeres. They also participate in some cell-cell and cell-matrix junctions. Many intermediate filaments are made of vimentins. Others, in cells of the skin hair and nails, are made of keratin. Some filaments, made of laminin, give structural support to the nuclear envelope.[1]
  • Microtubules are hollow cylinders of about 25 nm in diameter, formed by 13 protofilaments which are polymers of alpha and beta tubulin. Microtubules act as a scaffold to determine cell shape, and they provide "tracks" which cell organelles and vesicles move along. Microtubules also form the spindle fibers for separating chromosomes during mitosis. When arranged in geometric patterns inside flagella and cilia, they are used for locomotion. They have a very dynamic behaviour, binding GTP for polymerization. They are organized by the centrosome. [2]

In, for example, epithelial (skin) cells of the intestine, microfilaments that project into the villi, give shape to the cell surface; microtubules project from the centrosome to the cell periphery; and intermediate filaments connect adjacent cells through desmosomes.

The cytoskeleton of mammalian Sertoli cells is one of the most elaborate that has been described. Actin filaments, vimentin-type intermediate filaments and microtubules all have distinct patterns of distribution that change during spermatogenesis. Actin filaments are concentrated in ectoplasmic specializations that are involved in intercellular adhesion, and at complexes involved with junction internalization during sperm release and movement of spermatocytes between neighbouring Sertoli cells. Intermediate filaments are in a perinuclear network which has peripheral extensions to desmosome-like junctions with adjacent cells and to small attachments to the basal lamina, and are thought to have a role in maintaining tissue integrity when the epithelium is mechanically stressed. Microtubules are involved in maintaining the columnar shape of Sertoli cells, with transporting organelles in the cytoplasm, with secreting seminiferous tubule fluid, and in intercellular communication. [3]

Prokaryote cells

The cytoskeleton was once believed to be a feature only of eukaryotic cells, but homologues of the major proteins of the eukaryotic cytoskeleton have been found in prokaryotes.[4] [5]Cabeen MT, Jacobs-Wagner C (2010) The bacterial cytoskeleton Annu Rev Genet 44:365-92</ref> FtsZ was the first of these to be identified. Like tubulin, FtsZ forms filaments in the presence of GTP, but these filaments do not group into tubules. During cell division, FtsZ is the first protein to move to the division site, and is essential for recruiting other proteins that produce a new cell wall between the dividing cells.

Prokaryotic actin-like proteins, such as MreB, are involved in maintaining cell shape. All non-spherical bacteria have genes that encode actin-like proteins; these proteins form a helical network beneath the cell membrane that guides the proteins involved in cell wall biosynthesis.

Some plasmids encode a partitioning system that involves an actin-like protein ParM. Filaments of ParM exhibit dynamic instability, and may partition plasmid DNA into the dividing daughter cells by a mechanism like that used by microtubules during eukaryotic mitosis.

The bacterium Caulobacter crescentus expresses a protein, crescentin, that is related to the intermediate filaments of eukaryotic cells. Crescentin is also involved in maintaining cell shape, but how it does this is unclear.

References

  1. Zhong Z et al. (2010) Beyond lamins other structural components of the nucleoskeleton Methods Cell Biol 98:97-119 PMID 20816232
  2. Bereiter-Hahn J, Jendrach M (2010) Mitochondrial dynamics Int Rev Cell Mol Biol 284:1-65. PMID 20875628
  3. Vogl AW et al. (2008) The Sertoli cell cytoskeleton Adv Exp Med Biol 636:186-211 PMID 19856169
  4. Shih YL, Rothfield L (2006). "The bacterial cytoskeleton". Microbiol Mol Biol Rev 70: 729–54. PMID 16959967.
  5. Michie KA, Löwe J (2006). "Dynamic filaments of the bacterial cytoskeleton". Annu Rev Biochem 75: 467–92. PMID 16756499.