CZ:Featured article/Current: Difference between revisions
imported>Chunbum Park (dementia) |
imported>Chunbum Park (Higgs boson) |
||
Line 1: | Line 1: | ||
== '''[[ | == '''[[Higgs boson]]''' == | ||
---- | ---- | ||
''' | The '''Higgs boson''' is a massive spin-0 [[elementary particle]] in the [[Standard Model]] of [[particle physics]] that plays a key role in explaining the mass of other elementary particles. Its experimental discovery was announced in a seminar July 4, 2012.<ref name=Higgs> | ||
Announced at a CERN seminar in Geneva. See {{cite web |title=Higgs boson discovery brings scientists close to understanding mass |publisher=Washington Post |url=http://www.washingtonpost.com/business/higgs-boson-discovery-brings-scientists-lose-to-understanding-mass/2012/07/05/gJQA23iQPW_story.html |author=Thomas Mulier and Jason Gale |accessdate=2012-07-05 |quote=The data presented yesterday are the latest from the $10.5 billion [[Large Hadron Collider]], a 27-kilometer (17-mile) circumference particle accelerator buried on the border of France and Switzerland. CERN has 10,000 scientists working on the project...}} | |||
''[[ | </ref><ref name=CERN> | ||
{{cite web |title=CERN experiments observe particle consistent with long-sought Higgs boson |date=4 July 2012 |publisher=CERN press office |accessdate=2012-07-05 |url=http://press.web.cern.ch/press/PressReleases/Releases2012/PR17.12E.html}} | |||
</ref> This particle was first proposed by Professor [[Peter Higgs]] of [[University of Edinburgh|Edinburgh University]] in 1964 as a means to explain the origin of the masses of the elementary particles by the introduction of an fundamental scalar field. This gives all the fundamental particles mass via a process of spontaneous symmetry breaking called the ''Higgs Mechanism''. The Higgs boson was popularised as the "God particle" by the [[Nobel Prize]]-winning [[physicist]] [[Leon M. Lederman]] in his 1993 popular science book ''The God Particle: If the Universe Is the Answer, What is the Question?'' co-written with science writer Dick Teresi.<ref>Leon M. Lederman and R Teresi (1993) ''The God Particle: If the Universe Is the Answer, What is the Question?'' Dell. ISBN 0-385-31211-3</ref><ref> [http://www.newscientist.com/article/dn16618-fermilab-closing-in-on-the-god-particle.html Fermilab 'closing in' on the God particle] ''New Scientist''</ref> | |||
''[[Higgs boson|.... (read more)]]'' | |||
{| class="wikitable collapsible collapsed" style="width: 90%; float: center; margin: 0.5em 1em 0.8em 0px;" | {| class="wikitable collapsible collapsed" style="width: 90%; float: center; margin: 0.5em 1em 0.8em 0px;" | ||
|- | |- | ||
! style="text-align: center;" | [[ | ! style="text-align: center;" | [[Higgs boson#References|notes]] | ||
|- | |- | ||
| | | | ||
{{reflist|2}} | {{reflist|2}} | ||
|} | |} |
Revision as of 22:18, 5 July 2012
Higgs boson
The Higgs boson is a massive spin-0 elementary particle in the Standard Model of particle physics that plays a key role in explaining the mass of other elementary particles. Its experimental discovery was announced in a seminar July 4, 2012.[1][2] This particle was first proposed by Professor Peter Higgs of Edinburgh University in 1964 as a means to explain the origin of the masses of the elementary particles by the introduction of an fundamental scalar field. This gives all the fundamental particles mass via a process of spontaneous symmetry breaking called the Higgs Mechanism. The Higgs boson was popularised as the "God particle" by the Nobel Prize-winning physicist Leon M. Lederman in his 1993 popular science book The God Particle: If the Universe Is the Answer, What is the Question? co-written with science writer Dick Teresi.[3][4]
notes |
---|
|