Fslog.cin: Difference between revisions
Jump to navigation
Jump to search
imported>Dmitrii Kouznetsov (load) |
imported>Dmitrii Kouznetsov No edit summary |
||
Line 1: | Line 1: | ||
// [[ArcTetration]] to base e | // [[ArcTetration]] to base e, inverse function of [[tetration]]. | ||
// Complex double implementation of function [[ate]] in [[C++]]. | // Complex double implementation of function [[ate]] in [[C++]]. | ||
// Precision: 14 correct decimal digits are expected in the output. | // Precision: 14 correct decimal digits are expected in the output. |
Latest revision as of 01:01, 25 November 2012
// ArcTetration to base e, inverse function of tetration.
// Complex double implementation of function ate in C++. // Precision: 14 correct decimal digits are expected in the output. // To call this function at complex argument z, type FSLOG(z) // Copyleft 2009-2011 by Dmitrii Kouznetsov. // The free use is allowed. At the redistribution, // indicate this license and attribute the source: // http://tori.ils.uec.ac.jp/TORI/index.php/Fslog.cin
z_type L=z_type(0.3181315052047641353,1.337235701430689409); z_type Zo=z_type(.31813150520476413, 1.3372357014306895); z_type Zc=z_type(.31813150520476413,-1.3372357014306895);
DB DE[128]={ 1.4192252155045112363 ,-0.05213258059503801667 , 0.00693219127232187586 ,-0.00015617045803377859 ,-0.00100912103192385785 , 0.00082172671942507903 ,-0.00035776641706493177 ,-0.00000931803078422933 , 0.00016678111348857047 ,-0.00014181446429806932 , 0.00003186488716454018 , 0.00006022937595596333 ,-0.00007769822429012910 , 0.00002881816919640196 , 0.00003346765914794806 ,-0.00005635940084759932 , 0.00002613708927959275 , 0.00002533341053138444 ,-0.00005010441151688034 , 0.00002593810263640952 , 0.00002404611936084357 ,-0.00005163238246428602 , 0.00002794638872473000 , 0.00002700739592764804 ,-0.00005939035114511979 , 0.00003210955504312860 , 0.00003438232223525011 ,-0.00007428278434380886 , 0.00003866302665809861 , 0.00004803799918127077 ,-0.00009914141292927652 , 0.00004800025436154043 , 0.00007191960183392704 ,-0.00013922522917537457 , 0.00006043126908005670 , 0.00011338211995240744 ,-0.00020351111316586852 , 0.00007562971718596908 , 0.00018585637209671475 ,-0.00030700846364341576 , 0.00009132512919756623 , 0.00031386108850653502 ,-0.00047464470561729965 , 0.00010030770871287629 , 0.00054232170050706079 ,-0.00074759603610534669 , 0.00008375204845585605 , 0.00095389423083896800 ,-0.00119336225449479362 ,-0.00000327383738614825 , 0.00170107934819055851 ,-0.00192109516273315209 ,-0.00026290310001950487 , 0.00306590657916818192 ,-0.00310372506294090238 ,-0.00091982425407694250 , 0.00556979490215834833 ,-0.00500546835451257978 ,-0.00245869651201214212 , 0.01017705593773498771 ,-0.00800820238034244403 ,-0.00590649361431362999 , 0.01866321477729812259 ,-0.01260156096677063874 ,-0.01341963601206602220 , 0.03429254345271898208 ,-0.01926894593144593687 ,-0.02946277663641767158 , 0.06300065960337521143 ,-0.02800532706641396460 ,-0.06325609033757989552 , 0.11556117355587923468 ,-0.03708367328869965895 ,-0.13352664223772733876 , 0.21104853030721187901 ,-0.03941069742436464907 ,-0.27853504829255953945 , 0.38331715278474703945 ,-0.01491397058539710788 ,-0.57446133459038406510 , 0.68905734940479856920 , 0.09065013779953061401 ,-1.17542205931169707611 , 1.22536662105515059551 , 0.40500835675024698945 ,-2.37977019901803332758 , 2.13411821810153146117 , 1.24184396615612624437 ,-4.78947531960227212977 , 3.64093109251482172084 , 3.27095016057312193425 ,-9.53051815711462246838 , 5.92750355113636295812 , 8.12068845726284394004 ,-18.89123486907114468636 , 9.07245090167984002960 ,18.99435214920948311601 ,-36.62201395750987842348 ,12.69160696640316032813 ,43.73569046442687380249 ,-71.43155879446639744401 ,14.83661067193675719977 ,95.94011857707508283966 ,-135.28537549407113260713 , 4.55415019762845751927 ,212.46383399209483400227 ,-258.45286561264816782568 ,-34.35533596837944259050 ,440.37608695652170354151 ,-466.49328063241102881875 ,-184.78893280632408391284 ,969.10988142292478642048 ,-888.80079051383393107244 ,-485.21897233201576682404 ,1912.15652173913008482486 ,-1381.80553359683767666866 ,-1490.15335968379417863616 ,4216.82213438735107047250 ,-2565.99525691699591334327 ,-3155.47826086956501967506 ,7689.57470355731129529886 ,-3206.47588932806274897303 ,-8547.41501976284416741692 ,17971.70592885375299374573 ,-7203.41501976284507691162 ,-16388.65454545454485923983 ,28589.12885375493715400808 ,-2355.80711462450562976301 };
z_type slo(z_type z1){ int K=128,k; z_type z=z1-1.; z/=2.; z_type s=0.; //z_type t=1; for(k=K-1;k>0;k--){ s+=DE[k]; s*=z; } s+=DE[0]; s+=log(z1-Zo)/Zo+log(z1-Zc)/Zc; return s; }
z_type FSLOG(z_type z1){ DB x=Re(z1), y=Im(z1); if(fabs(y)>fabs(Im(Zo)) ) return FSLOG(log(z1))+1.; if(x < Re(Zo) ) return FSLOG(exp(z1))-1.; if(x>2) return FSLOG(log(z1))+1.;
z_type z=z1-1.; z_type LZ=log(z1); if( abs(LZ-1.)< abs(z) ) return FSLOG(LZ)+1.; //z_type EZ=exp(z1); if( abs(EZ-1.)<.1*abs(z) ) return FSLOG(EZ)-1.; return slo(z1); }
/*
- /