CZ:Featured article/Current: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Chunbum Park
No edit summary
imported>John Stephenson
(template)
 
(200 intermediate revisions by 8 users not shown)
Line 1: Line 1:
The '''[[Dirac delta function]]''' is a function introduced in 1930 by Paul Adrien Maurice Dirac in his seminal book on quantum mechanics. A physical model that visualizes a delta function is a mass distribution of finite total mass ''M''—the integral over the mass distribution.  When the distribution becomes smaller and smaller,  while ''M'' is constant, the mass distribution shrinks to a ''point mass'', which by definition has zero extent and yet has a finite-valued integral equal to total mass ''M''. In the limit of a point mass the distribution becomes a Dirac delta function.
{{:{{FeaturedArticleTitle}}}}
 
<small>
Heuristically, the Dirac delta function can be seen as an extension of the Kronecker delta from integral indices (elements of <font style="vertical-align: 13%"> <math>\mathbb{Z}</math></font>) to real indices (elements of <font style="vertical-align: 13%"><math>\mathbb{R}</math></font>). Note that the Kronecker delta acts as a "filter" in a summation:
==Footnotes==
:<math>
{{reflist|2}}
\sum_{i=m}^n \; f_i\; \delta_{ia} =
</small>
\begin{cases}
f_a & \quad\hbox{if}\quad  a\in[m,n] \sub\mathbb{Z}  \\
0  & \quad \hbox{if}\quad a \notin [m,n].
\end{cases}
</math>
 
In analogy, the Dirac delta function &delta;(''x''&minus;''a'')  is defined by (replace ''i'' by ''x'' and the summation over ''i'' by an integration over ''x''),
:<math>
\int_{a_0}^{a_1} f(x)  \delta(x-a) \mathrm{d}x =
\begin{cases}
f(a) & \quad\hbox{if}\quad  a\in[a_0,a_1] \sub\mathbb{R},  \\
0  & \quad \hbox{if}\quad a \notin [a_0,a_1].
\end{cases}
</math>
 
The Dirac delta function is ''not'' an ordinary well-behaved map  <font style="vertical-align: 12%"><math>\mathbb{R} \rightarrow \mathbb{R}</math></font>, but a distribution, also known as an ''improper'' or ''generalized function''. Physicists express its special character by stating that the Dirac delta function makes only sense as a factor in an integrand ("under the integral"). Mathematicians say that the delta function is a linear functional on a space of test functions.
 
==Properties==
Most commonly one takes the lower and the upper bound in the definition of the delta function equal to <math>-\infty</math> and <math> \infty</math>, respectively. From here on this will be done.
:<math>
\begin{align}
\int_{-\infty}^{\infty} \delta(x)\mathrm{d}x &= 1, \\
\frac{1}{2\pi}\int_{-\infty}^{\infty} e^{ikx} \mathrm{d}k &= \delta(x) \\
\delta(x-a) &= \delta(a-x), \\
(x-a)\delta(x-a) &= 0, \\
\delta(ax) &= |a|^{-1} \delta(x) \quad (a \ne 0), \\
f(x) \delta(x-a) &= f(a) \delta(x-a), \\
\int_{-\infty}^{\infty} \delta(x-y)\delta(y-a)\mathrm{d}y &= \delta(x-a)
\end{align}
</math>
The physicist's proof of these properties proceeds by making proper substitutions into the integral and using the ordinary rules of integral calculus. The delta function as a Fourier transform of the unit function ''f''(''x'') = 1 (the second property) will be proved below.
The last property is the analogy of the multiplication of two identity matrices,
:<math>
\sum_{j=1}^n \;\delta_{ij}\;\delta_{jk} = \delta_{ik}, \quad i,k=1,\ldots, n.
</math>
''[[Dirac delta function|.... (read more)]]''

Latest revision as of 10:19, 11 September 2020

In computational molecular physics and solid state physics, the Born-Oppenheimer approximation is used to separate the quantum mechanical motion of the electrons from the motion of the nuclei. The method relies on the large mass ratio of electrons and nuclei. For instance the lightest nucleus, the hydrogen nucleus, is already 1836 times heavier than an electron. The method is named after Max Born and Robert Oppenheimer[1], who proposed it in 1927.

Rationale

The computation of the energy and wave function of an average-size molecule is a formidable task that is alleviated by the Born-Oppenheimer (BO) approximation.The BO approximation makes it possible to compute the wave function in two less formidable, consecutive, steps. This approximation was proposed in the early days of quantum mechanics by Born and Oppenheimer (1927) and is indispensable in quantum chemistry and ubiquitous in large parts of computational physics.

In the first step of the BO approximation the electronic Schrödinger equation is solved, yielding a wave function depending on electrons only. For benzene this wave function depends on 126 electronic coordinates. During this solution the nuclei are fixed in a certain configuration, very often the equilibrium configuration. If the effects of the quantum mechanical nuclear motion are to be studied, for instance because a vibrational spectrum is required, this electronic computation must be repeated for many different nuclear configurations. The set of electronic energies thus computed becomes a function of the nuclear coordinates. In the second step of the BO approximation this function serves as a potential in a Schrödinger equation containing only the nuclei—for benzene an equation in 36 variables.

The success of the BO approximation is due to the high ratio between nuclear and electronic masses. The approximation is an important tool of quantum chemistry, without it only the lightest molecule, H2, could be handled; all computations of molecular wave functions for larger molecules make use of it. Even in the cases where the BO approximation breaks down, it is used as a point of departure for the computations.

Historical note

The Born-Oppenheimer approximation is named after M. Born and R. Oppenheimer who wrote a paper [Annalen der Physik, vol. 84, pp. 457-484 (1927)] entitled: Zur Quantentheorie der Molekeln (On the Quantum Theory of Molecules). This paper describes the separation of electronic motion, nuclear vibrations, and molecular rotation. A reader of this paper who expects to find clearly delineated the BO approximation—as it is explained above and in most modern textbooks—will be disappointed. The presentation of the BO approximation is well hidden in Taylor expansions (in terms of internal and external nuclear coordinates) of (i) electronic wave functions, (ii) potential energy surfaces and (iii) nuclear kinetic energy terms. Internal coordinates are the relative positions of the nuclei in the molecular equilibrium and their displacements (vibrations) from equilibrium. External coordinates are the position of the center of mass and the orientation of the molecule. The Taylor expansions complicate the theory tremendously and make the derivations very hard to follow. Moreover, knowing that the proper separation of vibrations and rotations was not achieved in this work, but only eight years later [by C. Eckart, Physical Review, vol. 46, pp. 383-387 (1935)] (see Eckart conditions), chemists and molecular physicists are not very much motivated to invest much effort into understanding the work by Born and Oppenheimer, however famous it may be. Although the article still collects many citations each year, it is safe to say that it is not read anymore, except maybe by historians of science.

Footnotes

  1. Wikipedia has an article about Robert Oppenheimer.