Tetration/Code/Polynomial25power: Difference between revisions
imported>Dmitrii Kouznetsov (New page: // Generator of the upper right part of the figure 200px // In order to generate the figure above, you need // the plotter routines // [[ContourPlot...) |
imported>Chris Day No edit summary |
||
(3 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
// Generator of the upper right part of the figure [[TetrationPolynomial25power.jpg|200px]] | {{subpages}} | ||
// Generator of the upper right part of the figure [[Image:TetrationPolynomial25power.jpg|200px]] | |||
// In order to generate the figure above, you need | // In order to generate the figure above, you need | ||
// the plotter routines | // the plotter routines | ||
Line 7: | Line 8: | ||
// | // | ||
// Copyleft 2008 by Dmitrii Kouznetsov | // Copyleft 2008 by Dmitrii Kouznetsov | ||
#include <math.h> | #include <math.h> | ||
#include <stdio.h> | #include <stdio.h> | ||
#include <stdlib.h> | #include <stdlib.h> | ||
#define DB double | #define DB double | ||
#define DO(x,y) for(x=0;x<y;x++) | #define DO(x,y) for(x=0;x<y;x++) | ||
#include <complex.h> | #include <complex.h> | ||
#define z_type complex<double> | #define z_type complex<double> | ||
#define Re(x) x.real() | #define Re(x) x.real() | ||
#define Im(x) x.imag() | #define Im(x) x.imag() | ||
#define I z_type(0.,1.) | #define I z_type(0.,1.) | ||
z_type F4natu(z_type z) // polybonial approcimation | z_type F4natu(z_type z) // polybonial approcimation | ||
{ int K=51,k; | { int K=51,k; | ||
DB coef[51]={ 1. | DB coef[51]={ 1. | ||
, 1.091767351258322138 | , 1.091767351258322138 | ||
, 0.271483212901696469 | , 0.271483212901696469 | ||
, 0.212453248176258214 | , 0.212453248176258214 | ||
, 0.069540376139988952 | , 0.069540376139988952 | ||
, 0.044291952090474256 | , 0.044291952090474256 | ||
, 0.014736742096390039 | , 0.014736742096390039 | ||
, 0.008668781817225539 | , 0.008668781817225539 | ||
, 0.002796479398385586 | , 0.002796479398385586 | ||
, 0.001610631290584341 | , 0.001610631290584341 | ||
, 0.000489927231484419 | , 0.000489927231484419 | ||
, 0.000288181071154065 | , 0.000288181071154065 | ||
, 0.000080094612538551 | , 0.000080094612538551 | ||
, 0.000050291141793809 | , 0.000050291141793809 | ||
, 0.000012183790344901 | , 0.000012183790344901 | ||
, 0.000008665533667382 | , 0.000008665533667382 | ||
, 0.000001687782319318 | , 0.000001687782319318 | ||
, 0.000001493253248573 | , 0.000001493253248573 | ||
, 0.000000198760764204 | , 0.000000198760764204 | ||
, 0.000000260867356004 | , 0.000000260867356004 | ||
, 0.000000014709954143 | , 0.000000014709954143 | ||
, 0.000000046834497327 | , 0.000000046834497327 | ||
,-0.000000001549241666 | ,-0.000000001549241666 | ||
, 0.000000008741510781 | , 0.000000008741510781 | ||
,-0.000000001125787310 | ,-0.000000001125787310 | ||
, 0.000000001707959267 | , 0.000000001707959267 | ||
,-0.000000000377858315 | ,-0.000000000377858315 | ||
, 0.000000000349577877 | , 0.000000000349577877 | ||
,-0.000000000105377012 | ,-0.000000000105377012 | ||
, 0.000000000074590971 | , 0.000000000074590971 | ||
,-0.000000000027175982 | ,-0.000000000027175982 | ||
, 0.000000000016460766 | , 0.000000000016460766 | ||
,-0.000000000006741873 | ,-0.000000000006741873 | ||
, 0.000000000003725329 | , 0.000000000003725329 | ||
,-0.000000000001639087 | ,-0.000000000001639087 | ||
, 0.000000000000858364 | , 0.000000000000858364 | ||
,-0.000000000000394374 | ,-0.000000000000394374 | ||
, 0.000000000000200252 | , 0.000000000000200252 | ||
,-0.000000000000094420 | ,-0.000000000000094420 | ||
, 0.000000000000047121 | , 0.000000000000047121 | ||
,-0.000000000000022563 | ,-0.000000000000022563 | ||
, 0.000000000000011155 | , 0.000000000000011155 | ||
,-0.000000000000005391 | ,-0.000000000000005391 | ||
, 0.000000000000002652 | , 0.000000000000002652 | ||
,-0.000000000000001289 | ,-0.000000000000001289 | ||
, 0.000000000000000633 | , 0.000000000000000633 | ||
,-0.000000000000000309 | ,-0.000000000000000309 | ||
, 0.000000000000000151 | , 0.000000000000000151 | ||
,-0.000000000000000074 | ,-0.000000000000000074 | ||
, 0.000000000000000036 | , 0.000000000000000036 | ||
,-0.000000000000000018 | ,-0.000000000000000018 | ||
}; | }; | ||
z_type s=1.,t=z; | z_type s=1.,t=z; | ||
for(k=1;k<=25;k++) { s+=coef[k]*t; t*=z; } //only 25 terms are used | for(k=1;k<=25;k++) { s+=coef[k]*t; t*=z; } //only 25 terms are used | ||
return s; | return s; | ||
} | } | ||
// | |||
#include "conto.cin" | #include "conto.cin" | ||
main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d, cu,cd; | main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d, cu,cd; | ||
z_type Zo=z_type(.31813150520476413, 1.3372357014306895); | z_type Zo=z_type(.31813150520476413, 1.3372357014306895); | ||
z_type Zc=z_type(.31813150520476413,-1.3372357014306895); | z_type Zc=z_type(.31813150520476413,-1.3372357014306895); | ||
int M=150,M1=M+1; | |||
int M=150,M1=M+1; | int N=151,N1=N+1; | ||
int N=151,N1=N+1; | DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array. | ||
DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array. | char v[M1*N1]; // v is working array | ||
char v[M1*N1]; // v is working array | FILE *o;o=fopen("TetrationPolynom25terms.eps","w");ado(o,0,0,124,124); | ||
FILE *o;o=fopen("TetrationPolynom25terms.eps","w");ado(o,0,0,124,124); | fprintf(o,"62 62 translate\n 20 20 scale\n"); | ||
fprintf(o,"62 62 translate\n 20 20 scale\n"); | // | ||
DO(m,M1) X[m]=-3+.04*m; | |||
DO(n,N1) Y[n]=-3+.04*(n-.5); | |||
DO(m,M1) X[m]=-3+.04*m; | // | ||
DO(n,N1) Y[n]=-3+.04*(n-.5); | for(m=-3;m<4;m++) { if(m==0){M(m,-3.1)L(m,3.1)} | ||
// | else {M(m,-3)L(m,3)} } | ||
for(n=-3;n<4;n++) {M( -3,n)L(3,n)} fprintf(o,".006 W 0 0 0 RGB S\n"); | |||
for(m=-3;m<4;m++) { if(m==0){M(m,-3.1)L(m,3.1)} | // | ||
z_type tm,tp,F[M1*N1]; | |||
for(n=-3;n<4;n++) {M( -3,n)L(3,n)} fprintf(o,".006 W 0 0 0 RGB S\n"); | // | ||
DO(m,M1)DO(n,N1){ g[m*N1+n]=9999; | |||
z_type tm,tp,F[M1*N1]; | f[m*N1+n]=9999; | ||
} | |||
DO(m,M1)DO(n,N1){ g[m*N1+n]=9999; | for(m=0;m<M1;m++){x=X[m]; | ||
DO(n,N1){y=Y[n]; z=z_type(x,y); | |||
c=F4natu(z); F[m*N1+n]=c; | |||
for(m=0;m<M1;m++){x=X[m]; | } | ||
} | |||
// | |||
DO(m,M1) | |||
DO(n,N1){ | |||
c=(F[m*N1+n]); p=Re(c); q=Im(c); | |||
// | if(p>-999 && p<999) g[m*N1+n]=p; | ||
if(q>-999 && q<999) f[m*N1+n]=q; | |||
} | |||
DO(m,M1) | // | ||
DO(n,N1){ | p=1;q=99; | ||
p=1;q=99; | |||
conto(o,f,w,v,X,Y,M,N, (-3*M_PI ),-q,q); fprintf(o,".04 W 1 0 1 RGB S\n"); | conto(o,f,w,v,X,Y,M,N, (-3*M_PI ),-q,q); fprintf(o,".04 W 1 0 1 RGB S\n"); | ||
conto(o,f,w,v,X,Y,M,N, ( -M_PI ),-q,q); fprintf(o,".04 W 1 0 1 RGB S\n"); | conto(o,f,w,v,X,Y,M,N, ( -M_PI ),-q,q); fprintf(o,".04 W 1 0 1 RGB S\n"); | ||
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, (-3.+.1*n),-p, p); fprintf(o,".01 W 0 1 0 RGB S\n"); | for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, (-3.+.1*n),-p, p); fprintf(o,".01 W 0 1 0 RGB S\n"); | ||
conto(o,f,w,v,X,Y,M,N, (-2. ),-q ,q); fprintf(o,".03 W 1 0 0 RGB S\n"); | conto(o,f,w,v,X,Y,M,N, (-2. ),-q ,q); fprintf(o,".03 W 1 0 0 RGB S\n"); | ||
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, (-2.+.1*n),-p ,p); fprintf(o,".01 W 0 1 0 RGB S\n"); | for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, (-2.+.1*n),-p ,p); fprintf(o,".01 W 0 1 0 RGB S\n"); | ||
conto(o,f,w,v,X,Y,M,N, (-1. ),-q,q); fprintf(o,".03 W 1 0 0 RGB S\n"); | conto(o,f,w,v,X,Y,M,N, (-1. ),-q,q); fprintf(o,".03 W 1 0 0 RGB S\n"); | ||
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, (-1.+.1*n),-p ,p); fprintf(o,".01 W 0 1 0 RGB S\n"); | for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, (-1.+.1*n),-p ,p); fprintf(o,".01 W 0 1 0 RGB S\n"); | ||
conto(o,f,w,v,X,Y,M,N, (0. ),-q,q); fprintf(o,".02 W 0 0 0 RGB S\n"); | conto(o,f,w,v,X,Y,M,N, (0. ),-q,q); fprintf(o,".02 W 0 0 0 RGB S\n"); | ||
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, ( .1*n),-p ,p); fprintf(o,".01 W 0 1 0 RGB S\n"); | for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, ( .1*n),-p ,p); fprintf(o,".01 W 0 1 0 RGB S\n"); | ||
conto(o,f,w,v,X,Y,M,N, ( 1. ),-q ,q); fprintf(o,".03 W 0 0 1 RGB S\n"); | conto(o,f,w,v,X,Y,M,N, ( 1. ),-q ,q); fprintf(o,".03 W 0 0 1 RGB S\n"); | ||
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, ( 1.+.1*n),-p ,p); fprintf(o,".01 W 0 1 0 RGB S\n"); conto(o,f,w,v,X,Y,M,N, ( 2. ),-q ,q); fprintf(o,".03 W 0 0 1 RGB S\n"); | for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, ( 1.+.1*n),-p ,p); fprintf(o,".01 W 0 1 0 RGB S\n"); | ||
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, ( 2.+.1*n),-p, p); fprintf(o,".01 W 0 1 0 RGB S\n"); | conto(o,f,w,v,X,Y,M,N, ( 2. ),-q ,q); fprintf(o,".03 W 0 0 1 RGB S\n"); | ||
for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, ( 2.+.1*n),-p, p); fprintf(o,".01 W 0 1 0 RGB S\n"); | |||
conto(o,f,w,v,X,Y,M,N, ( M_PI ),-q,q); fprintf(o,".04 W 1 0 1 RGB S\n"); | conto(o,f,w,v,X,Y,M,N, ( M_PI ),-q,q); fprintf(o,".04 W 1 0 1 RGB S\n"); | ||
conto(o,f,w,v,X,Y,M,N, (3*M_PI ),-q,q); fprintf(o,".04 W 1 0 1 RGB S\n"); | conto(o,f,w,v,X,Y,M,N, (3*M_PI ),-q,q); fprintf(o,".04 W 1 0 1 RGB S\n"); | ||
// | |||
conto(o,g,w,v,X,Y,M,N, (-2. ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n"); | conto(o,g,w,v,X,Y,M,N, (-2. ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n"); | ||
for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (-2.+.1*n),-p,p); fprintf(o,".01 W 1 0 0 RGB S\n"); | for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (-2.+.1*n),-p,p); fprintf(o,".01 W 1 0 0 RGB S\n"); | ||
conto(o,g,w,v,X,Y,M,N, (-1. ),-q,q); fprintf(o,".03 W 0 0 0 RGB S\n"); | conto(o,g,w,v,X,Y,M,N, (-1. ),-q,q); fprintf(o,".03 W 0 0 0 RGB S\n"); | ||
for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (-1.+.1*n),-p,p); fprintf(o,".01 W 1 0 0 RGB S\n"); | for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (-1.+.1*n),-p,p); fprintf(o,".01 W 1 0 0 RGB S\n"); | ||
conto(o,g,w,v,X,Y,M,N, (0. ),-q,q); fprintf(o,".03 W 0 0 0 RGB S\n"); | conto(o,g,w,v,X,Y,M,N, (0. ),-q,q); fprintf(o,".03 W 0 0 0 RGB S\n"); | ||
for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, ( .1*n),-p,p); fprintf(o,".01 W 0 0 1 RGB S\n"); | for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, ( .1*n),-p,p); fprintf(o,".01 W 0 0 1 RGB S\n"); | ||
conto(o,g,w,v,X,Y,M,N, ( 1. ),-q,q); fprintf(o,".03 W 0 0 0 RGB S\n"); | conto(o,g,w,v,X,Y,M,N, ( 1. ),-q,q); fprintf(o,".03 W 0 0 0 RGB S\n"); | ||
for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, ( 1.+.1*n),-p,p); fprintf(o,".01 W 0 0 1 RGB S\n"); | for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, ( 1.+.1*n),-p,p); fprintf(o,".01 W 0 0 1 RGB S\n"); | ||
conto(o,g,w,v,X,Y,M,N, ( 2. ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n"); | conto(o,g,w,v,X,Y,M,N, ( 2. ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n"); | ||
conto(o,g,w,v,X,Y,M,N, ( 3. ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n"); | conto(o,g,w,v,X,Y,M,N, ( 3. ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n"); | ||
conto(o,g,w,v,X,Y,M,N, ( 4. ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n"); | conto(o,g,w,v,X,Y,M,N, ( 4. ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n"); | ||
// | |||
//M(-10,0)L(-2,0)fprintf(o,".04 W 1 0 1 RGB S\n"); | //M(-10,0)L(-2,0)fprintf(o,".04 W 1 0 1 RGB S\n"); | ||
fprintf(o,"showpage\n\%\%\%Trailer"); fclose(o); | fprintf(o,"showpage\n\%\%\%Trailer"); fclose(o); | ||
//system( "ggv TetrationPolynom25Terms.eps"); | //system( "ggv TetrationPolynom25Terms.eps"); // for linux | ||
system( "open TetrationPolynom25Terms.eps"); | //system( "open TetrationPolynom25Terms.eps"); // for macintosh | ||
system("ps2pdf TetrationPolynom25terms.eps"); | system("ps2pdf TetrationPolynom25terms.eps"); | ||
getchar(); system("killall Preview"); | //getchar(); system("killall Preview"); //for macintosh | ||
} | } | ||
// | |||
// end of plotting program | // end of plotting program | ||
//[[Category:code]] | //[[Category:code]] |
Latest revision as of 23:40, 18 February 2009
The metadata subpage is missing. You can start it via filling in this form or by following the instructions that come up after clicking on the [show] link to the right. | |||
---|---|---|---|
|
// Generator of the upper right part of the figure // In order to generate the figure above, you need // the plotter routines // ContourPlot/code/ado.cin , than makes the header of the eps file, and // ContourPlot/code/conto.cin, that draws there the contour lines. // With these routines, you may compile and execute the source below // // Copyleft 2008 by Dmitrii Kouznetsov #include <math.h> #include <stdio.h> #include <stdlib.h> #define DB double #define DO(x,y) for(x=0;x<y;x++) #include <complex.h> #define z_type complex<double> #define Re(x) x.real() #define Im(x) x.imag() #define I z_type(0.,1.) z_type F4natu(z_type z) // polybonial approcimation { int K=51,k; DB coef[51]={ 1. , 1.091767351258322138 , 0.271483212901696469 , 0.212453248176258214 , 0.069540376139988952 , 0.044291952090474256 , 0.014736742096390039 , 0.008668781817225539 , 0.002796479398385586 , 0.001610631290584341 , 0.000489927231484419 , 0.000288181071154065 , 0.000080094612538551 , 0.000050291141793809 , 0.000012183790344901 , 0.000008665533667382 , 0.000001687782319318 , 0.000001493253248573 , 0.000000198760764204 , 0.000000260867356004 , 0.000000014709954143 , 0.000000046834497327 ,-0.000000001549241666 , 0.000000008741510781 ,-0.000000001125787310 , 0.000000001707959267 ,-0.000000000377858315 , 0.000000000349577877 ,-0.000000000105377012 , 0.000000000074590971 ,-0.000000000027175982 , 0.000000000016460766 ,-0.000000000006741873 , 0.000000000003725329 ,-0.000000000001639087 , 0.000000000000858364 ,-0.000000000000394374 , 0.000000000000200252 ,-0.000000000000094420 , 0.000000000000047121 ,-0.000000000000022563 , 0.000000000000011155 ,-0.000000000000005391 , 0.000000000000002652 ,-0.000000000000001289 , 0.000000000000000633 ,-0.000000000000000309 , 0.000000000000000151 ,-0.000000000000000074 , 0.000000000000000036 ,-0.000000000000000018 }; z_type s=1.,t=z; for(k=1;k<=25;k++) { s+=coef[k]*t; t*=z; } //only 25 terms are used return s; } // #include "conto.cin" main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d, cu,cd; z_type Zo=z_type(.31813150520476413, 1.3372357014306895); z_type Zc=z_type(.31813150520476413,-1.3372357014306895); int M=150,M1=M+1; int N=151,N1=N+1; DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array. char v[M1*N1]; // v is working array FILE *o;o=fopen("TetrationPolynom25terms.eps","w");ado(o,0,0,124,124); fprintf(o,"62 62 translate\n 20 20 scale\n"); // DO(m,M1) X[m]=-3+.04*m; DO(n,N1) Y[n]=-3+.04*(n-.5); // for(m=-3;m<4;m++) { if(m==0){M(m,-3.1)L(m,3.1)} else {M(m,-3)L(m,3)} } for(n=-3;n<4;n++) {M( -3,n)L(3,n)} fprintf(o,".006 W 0 0 0 RGB S\n"); // z_type tm,tp,F[M1*N1]; // DO(m,M1)DO(n,N1){ g[m*N1+n]=9999; f[m*N1+n]=9999; } for(m=0;m<M1;m++){x=X[m]; DO(n,N1){y=Y[n]; z=z_type(x,y); c=F4natu(z); F[m*N1+n]=c; } } // DO(m,M1) DO(n,N1){ c=(F[m*N1+n]); p=Re(c); q=Im(c); if(p>-999 && p<999) g[m*N1+n]=p; if(q>-999 && q<999) f[m*N1+n]=q; } // p=1;q=99; conto(o,f,w,v,X,Y,M,N, (-3*M_PI ),-q,q); fprintf(o,".04 W 1 0 1 RGB S\n"); conto(o,f,w,v,X,Y,M,N, ( -M_PI ),-q,q); fprintf(o,".04 W 1 0 1 RGB S\n"); for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, (-3.+.1*n),-p, p); fprintf(o,".01 W 0 1 0 RGB S\n"); conto(o,f,w,v,X,Y,M,N, (-2. ),-q ,q); fprintf(o,".03 W 1 0 0 RGB S\n"); for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, (-2.+.1*n),-p ,p); fprintf(o,".01 W 0 1 0 RGB S\n"); conto(o,f,w,v,X,Y,M,N, (-1. ),-q,q); fprintf(o,".03 W 1 0 0 RGB S\n"); for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, (-1.+.1*n),-p ,p); fprintf(o,".01 W 0 1 0 RGB S\n"); conto(o,f,w,v,X,Y,M,N, (0. ),-q,q); fprintf(o,".02 W 0 0 0 RGB S\n"); for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, ( .1*n),-p ,p); fprintf(o,".01 W 0 1 0 RGB S\n"); conto(o,f,w,v,X,Y,M,N, ( 1. ),-q ,q); fprintf(o,".03 W 0 0 1 RGB S\n"); for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, ( 1.+.1*n),-p ,p); fprintf(o,".01 W 0 1 0 RGB S\n"); conto(o,f,w,v,X,Y,M,N, ( 2. ),-q ,q); fprintf(o,".03 W 0 0 1 RGB S\n"); for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, ( 2.+.1*n),-p, p); fprintf(o,".01 W 0 1 0 RGB S\n"); conto(o,f,w,v,X,Y,M,N, ( M_PI ),-q,q); fprintf(o,".04 W 1 0 1 RGB S\n"); conto(o,f,w,v,X,Y,M,N, (3*M_PI ),-q,q); fprintf(o,".04 W 1 0 1 RGB S\n"); // conto(o,g,w,v,X,Y,M,N, (-2. ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n"); for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (-2.+.1*n),-p,p); fprintf(o,".01 W 1 0 0 RGB S\n"); conto(o,g,w,v,X,Y,M,N, (-1. ),-q,q); fprintf(o,".03 W 0 0 0 RGB S\n"); for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (-1.+.1*n),-p,p); fprintf(o,".01 W 1 0 0 RGB S\n"); conto(o,g,w,v,X,Y,M,N, (0. ),-q,q); fprintf(o,".03 W 0 0 0 RGB S\n"); for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, ( .1*n),-p,p); fprintf(o,".01 W 0 0 1 RGB S\n"); conto(o,g,w,v,X,Y,M,N, ( 1. ),-q,q); fprintf(o,".03 W 0 0 0 RGB S\n"); for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, ( 1.+.1*n),-p,p); fprintf(o,".01 W 0 0 1 RGB S\n"); conto(o,g,w,v,X,Y,M,N, ( 2. ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n"); conto(o,g,w,v,X,Y,M,N, ( 3. ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n"); conto(o,g,w,v,X,Y,M,N, ( 4. ),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n"); // //M(-10,0)L(-2,0)fprintf(o,".04 W 1 0 1 RGB S\n"); fprintf(o,"showpage\n\%\%\%Trailer"); fclose(o); //system( "ggv TetrationPolynom25Terms.eps"); // for linux //system( "open TetrationPolynom25Terms.eps"); // for macintosh system("ps2pdf TetrationPolynom25terms.eps"); //getchar(); system("killall Preview"); //for macintosh } // // end of plotting program //