Étale morphism: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Giovanni Antonio DiMatteo
imported>Giovanni Antonio DiMatteo
No edit summary
Line 6: Line 6:


#<math>f</math> is [[flat]] and [[unramified]].
#<math>f</math> is [[flat]] and [[unramified]].
#
#<math>f</math> is [[flat]] and the sheaf of [[Kähler differentials]] <math>\Omega_{X/Y}=0</math>.


==The small étale site==
==The small étale site==

Revision as of 19:17, 5 December 2007

The Weil Conjectures

Definition

The following conditions are equivalent for a morphism of schemes :

  1. is flat and unramified.
  2. is flat and the sheaf of Kähler differentials .

The small étale site

The category of étale -schemes becomes a Grothendieck topology, if one defines the sets of coverings to be jointly-surjective collections of -morphisms ; i.e., such that the union of images covers . That this forms a grothendieck essentially follows from the following three facts:

  1. Open immersions are étale.
  2. The étale property lifts by base change: that is, if is an étale morphism, and is any morphism, then the canonical fibered projection is again étale.
  3. If and are such that is étale, then is étale as well.

Étale cohomology

-adic cohomology