Lucas sequence: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Karsten Meyer
mNo edit summary
imported>Karsten Meyer
Line 38: Line 38:
*<math>\scriptstyle p\ </math> divides <math>\scriptstyle V_p(P,Q)-P\ </math>
*<math>\scriptstyle p\ </math> divides <math>\scriptstyle V_p(P,Q)-P\ </math>


[[Fermat's Little Theorem]] can then be seen as a special case of <math>\scriptstyle p\ </math> divides <math>\scriptstyle (V_n(P,Q) - P)\ </math> because <math>\scriptstyle a^p \equiv a \mod p</math> is equivalent to <math>\scriptstyle V_p(a+1,a) \equiv V_1(a+1,a) \mod p</math>.
[[Fermat's Little Theorem]] can then be seen as a special case of <math>\scriptstyle p\ </math> divides <math>\scriptstyle (V_n(P,Q) - P)\ </math> because <math>\scriptstyle a^p \equiv a \pmod p</math> is equivalent to <math>\scriptstyle V_p(a+1,a) \equiv V_1(a+1,a) \pmod p</math>.


The converse pair of statements that if <math>\scriptstyle n\ </math> divides <math>\scriptstyle U_n(P,Q)-\left(\frac Dn\right)</math> then is <math>\scriptstyle n\ </math> a prime number and if <math>m\ </math> divides <math>\scriptstyle V_m(P,Q)-P\ </math> then is <math>m\ </math> a prime number) are individually false and lead to [[Fibonacci pseudoprime|Fibonacci pseudoprimes]] and [[Lucas pseudoprime|Lucas pseudoprimes]], respectively.
The converse pair of statements that if <math>\scriptstyle n\ </math> divides <math>\scriptstyle U_n(P,Q)-\left(\frac Dn\right)</math> then is <math>\scriptstyle n\ </math> a prime number and if <math>m\ </math> divides <math>\scriptstyle V_m(P,Q)-P\ </math> then is <math>m\ </math> a prime number) are individually false and lead to [[Fibonacci pseudoprime|Fibonacci pseudoprimes]] and [[Lucas pseudoprime|Lucas pseudoprimes]], respectively.

Revision as of 09:23, 17 November 2007

Lucas sequences are a particular generalisation of sequences like the Fibonacci numbers, Lucas numbers, Pell numbers or Jacobsthal numbers. These sequences have one common characteristic: they can be generated over quadratic equations of the form: .

There exist two kinds of Lucas sequences:

  • Sequences with ,
  • Sequences with ,

where and are the solutions

and

of the quadratic equation .

Properties

  • The variables and , and the parameter and are interdependent. In particular, and .
  • For every sequence it holds that and .
  • For every sequence is holds that and .

For every Lucas sequence the following are true:

  • for all

Fibonacci numbers and Lucas numbers

The two best known Lucas sequences are the Fibonacci numbers and the Lucas numbers with and .

Lucas sequences and the prime numbers

If the natural number is a prime number then it holds that

  • divides
  • divides

Fermat's Little Theorem can then be seen as a special case of divides because is equivalent to .

The converse pair of statements that if divides then is a prime number and if divides then is a prime number) are individually false and lead to Fibonacci pseudoprimes and Lucas pseudoprimes, respectively.

Further reading