Fermat pseudoprime: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Karsten Meyer
mNo edit summary
imported>Louise Valmoria
(adding subpage template)
Line 1: Line 1:
{{subpages}}
A composite number ''n'' is called '''Fermat pseudoprime''' to a natural base ''a'', coprime to n, so that <math>a^{n-1} \equiv 1 \pmod n</math>
A composite number ''n'' is called '''Fermat pseudoprime''' to a natural base ''a'', coprime to n, so that <math>a^{n-1} \equiv 1 \pmod n</math>


Line 16: Line 18:
* [[Richard E. Crandall]] and [[Carl Pomerance]]: Prime Numbers. A Computational Perspective. Springer Verlag, ISBN 0-387-25282-7  
* [[Richard E. Crandall]] and [[Carl Pomerance]]: Prime Numbers. A Computational Perspective. Springer Verlag, ISBN 0-387-25282-7  
* [[Paolo Ribenboim]]: The New Book of Prime Number Records. Springer Verlag, 1996, ISBN 0-387-94457-5
* [[Paolo Ribenboim]]: The New Book of Prime Number Records. Springer Verlag, 1996, ISBN 0-387-94457-5
[[Category:Mathematics Workgroup]]

Revision as of 11:41, 6 December 2007

This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
Code [?]
 
This editable Main Article is under development and subject to a disclaimer.

A composite number n is called Fermat pseudoprime to a natural base a, coprime to n, so that

Restriction

It is sufficient, that the base a satisfy because every odd number n satisfy for that [1]

If n is a Fermat pseudoprime to base a, then n is a Fermat pseudoprime to base for every integer

Properties

Most of the Pseudoprimes, like Euler pseudoprime, Carmichael number, Fibonacci pseudoprime and Lucas pseudoprime, are Fermat pseudoprimes.

References and notes

  1. Richard E. Crandall and Carl Pomerance: Prime Numbers. A Computational Perspective. Springer Verlag , page 132, Therem 3.4.2.

Further reading